Sorting of rat liver and ileal sodium-dependent bile acid transporters in polarized epithelial cells. 1998

A Q Sun, and M Ananthanarayanan, and C J Soroka, and S Thevananther, and B L Shneider, and F J Suchy
Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029, USA.

The rat ileal apical Na+-dependent bile acid transporter (ASBT) and the liver Na+-taurocholate cotransporting polypeptide (Ntcp) are members of a new family of anion transporters. These transport proteins share limited sequence homology and almost identical predicted secondary structures but are localized to the apical surface of ileal enterocytes and the sinusoidal surface of hepatocytes, respectively. Stably transfected Madin-Darby canine kidney (MDCK) cells appropriately localized wild-type ASBT and Ntcp apically and basolaterally as assessed by functional activity and immunocytochemical localization studies. Truncated and chimeric transporters were used to determine the functional importance of the cytoplasmic tail in bile acid transport activity and membrane localization. Two cDNAs were created encoding a truncated transporter in which the 56-amino-acid COOH-terminal tail of Ntcp was removed or substituted with an eight-amino-acid epitope FLAG. For both mutants there was some loss of fidelity in basolateral sorting in that approximately 75% of each protein was delivered to the basolateral surface compared with approximately 90% of the wild-type Ntcp protein. In contrast, deletion of the cytoplasmic tail of ASBT led to complete loss of transport activity and sorting to the apical membrane. An Ntcp chimera in which the 56-amino-acid COOH-terminal tail of Ntcp was replaced with the 40-amino-acid cytoplasmic tail of ASBT was largely redirected (82.4 +/- 3.9%) to the apical domain of stably transfected MDCK cells, based on polarity of bile acid transport activity and localization by confocal immunofluorescence microscopy. These results indicate that a predominant signal for sorting of the Ntcp protein to the basolateral domain is located in a region outside of the cytoplasmic tail. These studies have further shown that a novel apical sorting signal is localized to the cytoplasmic tail of ASBT and that it is transferable and capable of redirecting a protein normally sorted to the basolateral surface to the apical domain of MDCK cells.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

A Q Sun, and M Ananthanarayanan, and C J Soroka, and S Thevananther, and B L Shneider, and F J Suchy
March 1997, The Journal of biological chemistry,
A Q Sun, and M Ananthanarayanan, and C J Soroka, and S Thevananther, and B L Shneider, and F J Suchy
February 2002, Bioscience, biotechnology, and biochemistry,
A Q Sun, and M Ananthanarayanan, and C J Soroka, and S Thevananther, and B L Shneider, and F J Suchy
September 2011, The Journal of cell biology,
A Q Sun, and M Ananthanarayanan, and C J Soroka, and S Thevananther, and B L Shneider, and F J Suchy
January 1991, Current topics in microbiology and immunology,
A Q Sun, and M Ananthanarayanan, and C J Soroka, and S Thevananther, and B L Shneider, and F J Suchy
May 2012, Cell research,
A Q Sun, and M Ananthanarayanan, and C J Soroka, and S Thevananther, and B L Shneider, and F J Suchy
May 1995, Journal of lipid research,
A Q Sun, and M Ananthanarayanan, and C J Soroka, and S Thevananther, and B L Shneider, and F J Suchy
February 1995, Journal of pediatric gastroenterology and nutrition,
A Q Sun, and M Ananthanarayanan, and C J Soroka, and S Thevananther, and B L Shneider, and F J Suchy
February 2017, Yao xue xue bao = Acta pharmaceutica Sinica,
A Q Sun, and M Ananthanarayanan, and C J Soroka, and S Thevananther, and B L Shneider, and F J Suchy
January 1998, Advances in pharmacology (San Diego, Calif.),
A Q Sun, and M Ananthanarayanan, and C J Soroka, and S Thevananther, and B L Shneider, and F J Suchy
December 1997, The Journal of clinical investigation,
Copied contents to your clipboard!