Impact of the putative differentiating agents sodium phenylbutyrate and sodium phenylacetate on proliferation, differentiation, and apoptosis of primary neoplastic myeloid cells. 1997

S D Gore, and D Samid, and L J Weng
The Johns Hopkins Oncology Center, Baltimore, Maryland 21287-8963, USA.

Sodium phenylacetate (PA) and sodium phenylbutyrate (PB) are aromatic fatty acids that can effect differentiation in a variety of cell lines at doses that may be clinically attainable. We have studied the impact of these two agents on lineage- and differentiation stage-specific antigen expression, proliferation, apoptosis, and clonogenic cell survival in primary cultures of bone marrow samples from patients with myeloid neoplasms at presentation and in remission and from normal volunteers. PB inhibited the proliferation of primary acute myeloid leukemia cells in suspension culture with an ID50 of 6.6 mM, similar to its ED50 in cell lines. At higher doses (>/=5 mM), PB also induced apoptosis. PB inhibited clonogenic leukemia cell growth with a median ID50 of less than 2 mM; however, colony-forming units-granulocyte/macrophage from patients with myelodysplasia and normal volunteers were inhibited with a similar ID50. In contrast to PB, its metabolite PA had no significant effect on either acute myeloid leukemia proliferation or apoptosis. Expression of the monocytic marker CD14 was increased in monocytic and myelomonocytic leukemias in response to PB, and to a lesser extent, PA. Surprisingly, both agents appeared to increase expression of the progenitor cell antigen CD34, as well as the DR locus of the human leukocyte antigen. These data indicate that PB, but not its metabolite PA, has significant cytostatic and differentiating activity against primary neoplastic myeloid cells at doses that may be achievable clinically.

UI MeSH Term Description Entries
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D009190 Myelodysplastic Syndromes Clonal hematopoietic stem cell disorders characterized by dysplasia in one or more hematopoietic cell lineages. They predominantly affect patients over 60, are considered preleukemic conditions, and have high probability of transformation into ACUTE MYELOID LEUKEMIA. Dysmyelopoietic Syndromes,Hematopoetic Myelodysplasia,Dysmyelopoietic Syndrome,Hematopoetic Myelodysplasias,Myelodysplasia, Hematopoetic,Myelodysplasias, Hematopoetic,Myelodysplastic Syndrome,Syndrome, Dysmyelopoietic,Syndrome, Myelodysplastic,Syndromes, Dysmyelopoietic,Syndromes, Myelodysplastic
D010648 Phenylacetates Derivatives of phenylacetic acid. Included under this heading are a variety of acid forms, salts, esters, and amides that contain the benzeneacetic acid structure. Note that this class of compounds should not be confused with derivatives of phenyl acetate, which contain the PHENOL ester of ACETIC ACID. Benzeneacetates,Benzeneacetic Acids,Phenylacetic Acids,Acids, Benzeneacetic,Acids, Phenylacetic
D010654 Phenylbutyrates Derivatives of 4-phenylbutyric acid, including its salts and esters.
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000208 Acute Disease Disease having a short and relatively severe course. Acute Diseases,Disease, Acute,Diseases, Acute

Related Publications

S D Gore, and D Samid, and L J Weng
August 2001, Clinical cancer research : an official journal of the American Association for Cancer Research,
S D Gore, and D Samid, and L J Weng
April 2002, Clinical cancer research : an official journal of the American Association for Cancer Research,
S D Gore, and D Samid, and L J Weng
February 2004, Clinical cancer research : an official journal of the American Association for Cancer Research,
S D Gore, and D Samid, and L J Weng
January 1997, Advances in experimental medicine and biology,
S D Gore, and D Samid, and L J Weng
February 2000, Clinical cancer research : an official journal of the American Association for Cancer Research,
S D Gore, and D Samid, and L J Weng
August 1997, International journal of radiation biology,
S D Gore, and D Samid, and L J Weng
September 1994, The Journal of investigative dermatology,
S D Gore, and D Samid, and L J Weng
December 1996, Therapeutic drug monitoring,
S D Gore, and D Samid, and L J Weng
January 2017, Case reports in pediatrics,
Copied contents to your clipboard!