Digitized image analysis reveals diffuse abnormalities in normal-appearing white matter during acute experimental autoimmune encephalomyelitis. 1998

J A Kawczak, and P M Mathisen, and J A Drazba, and B Fuss, and W B Macklin, and V K Tuohy
Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA.

Demyelination of the central nervous system is a hallmark of multiple sclerosis and its widely used animal model, experimental autoimmune encephalomyelitis (EAE). Recent studies using magnetic resonance imaging and spectroscopy on multiple sclerosis patients have revealed abnormalities of central nervous system normal-appearing white matter suggesting that micro-demyelination and/or extensive membrane turnover accompanies and perhaps precedes the appearance of manifest inflammatory lesions. In the present study, we induced EAE in SWXJ mice and analyzed digitized images of immunocytochemically stained spinal cord for detection of myelin proteolipid protein (PLP). We found that digitized image analysis is a highly sensitive, objective methodology for measuring the extent of myelin loss during EAE. Our data show that two-thirds of the measured reduction of myelin PLP occurring in EAE spinal cord could be attributed to a loss of myelin in normal-appearing white matter. The marked decrease in detection of PLP was accompanied by a corresponding decrease in PLP mRNA in the central nervous system. Our results indicate that during acute EAE, diffuse myelin abnormalities extend far beyond visibly detectable inflammatory foci and are characterized by a global decrease in the expression of myelin genes and their encoded proteins.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D003711 Demyelinating Diseases Diseases characterized by loss or dysfunction of myelin in the central or peripheral nervous system. Clinically Isolated CNS Demyelinating Syndrome,Clinically Isolated Syndrome, CNS Demyelinating,Demyelinating Disorders,Demyelination,Demyelinating Disease,Demyelinating Disorder,Demyelinations
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004681 Encephalomyelitis, Autoimmune, Experimental An experimental animal model for central nervous system demyelinating disease. Inoculation with a white matter emulsion combined with FREUND'S ADJUVANT, myelin basic protein, or purified central myelin triggers a T cell-mediated immune response directed towards central myelin. The pathologic features are similar to MULTIPLE SCLEROSIS, including perivascular and periventricular foci of inflammation and demyelination. Subpial demyelination underlying meningeal infiltrations also occurs, which is also a feature of ENCEPHALOMYELITIS, ACUTE DISSEMINATED. Passive immunization with T-cells from an afflicted animal to a normal animal also induces this condition. (From Immunol Res 1998;17(1-2):217-27; Raine CS, Textbook of Neuropathology, 2nd ed, p604-5) Autoimmune Encephalomyelitis, Experimental,Encephalomyelitis, Allergic,Encephalomyelitis, Experimental Autoimmune,Allergic Encephalomyelitis,Allergic Encephalomyelitis, Experimental,Autoimmune Experimental Encephalomyelitis,Experimental Allergic Encephalomyelitis,Experimental Autoimmune Encephalomyelitis,Encephalomyelitis, Autoimmune Experimental,Encephalomyelitis, Experimental Allergic,Experimental Allergic Encephalomyelitides,Experimental Encephalomyelitis, Autoimmune
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

J A Kawczak, and P M Mathisen, and J A Drazba, and B Fuss, and W B Macklin, and V K Tuohy
April 2001, Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology,
J A Kawczak, and P M Mathisen, and J A Drazba, and B Fuss, and W B Macklin, and V K Tuohy
August 2009, Biological psychiatry,
J A Kawczak, and P M Mathisen, and J A Drazba, and B Fuss, and W B Macklin, and V K Tuohy
January 2021, Brain communications,
J A Kawczak, and P M Mathisen, and J A Drazba, and B Fuss, and W B Macklin, and V K Tuohy
April 2008, Experimental neurology,
J A Kawczak, and P M Mathisen, and J A Drazba, and B Fuss, and W B Macklin, and V K Tuohy
January 2002, Journal of computer assisted tomography,
J A Kawczak, and P M Mathisen, and J A Drazba, and B Fuss, and W B Macklin, and V K Tuohy
June 2014, Journal of the neurological sciences,
J A Kawczak, and P M Mathisen, and J A Drazba, and B Fuss, and W B Macklin, and V K Tuohy
August 2021, Neurology,
J A Kawczak, and P M Mathisen, and J A Drazba, and B Fuss, and W B Macklin, and V K Tuohy
January 2015, PloS one,
J A Kawczak, and P M Mathisen, and J A Drazba, and B Fuss, and W B Macklin, and V K Tuohy
April 2013, Stroke,
J A Kawczak, and P M Mathisen, and J A Drazba, and B Fuss, and W B Macklin, and V K Tuohy
December 2003, Journal of neurology,
Copied contents to your clipboard!