Uptake of exogenous gangliosides by rat brain synaptosomes. 1998

H P Young, and Z F Christian, and R Cabeza, and L N Irwin
Department of Biological Sciences, University of Texas at El Paso 79968, USA.

Synaptosomes incorporated mixed brain gangliosides at a rapid initial rate followed by a slower phase of net movement from the protein-associated fraction into the membrane core. The pattern of incorporated gangliosides reflected the pattern available for incorporation. Intact synaptosomes incorporated approximately 100 pmol GM1/mg protein. Synaptosomes preincubated with proteolytic enzymes (trypsin, chymotrypsin, and papain) at different pH values (6.2, 7.4, 7.8) incorporated more exogenous gangliosides than synaptosomes preincubated in buffer alone. This effect was maximal at pH 7.8, though analysis of variance revealed that the proteolytic treatment and pH effects were probably independent processes. Overall uptake of exogenous gangliosides correlated significantly with amount of membrane protein loss, indicating that initial access of exogenous gangliosides to synaptosomal membranes is retarded by cell-surface proteins. These results suggest synaptosomes as a useful alternative to cultured cells for investigating the interaction of gangliosides with other cell surface constituents.

UI MeSH Term Description Entries
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013574 Synaptosomes Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates. Synaptosome
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

H P Young, and Z F Christian, and R Cabeza, and L N Irwin
June 1978, Journal of neurochemistry,
H P Young, and Z F Christian, and R Cabeza, and L N Irwin
January 1977, Biochimica et biophysica acta,
H P Young, and Z F Christian, and R Cabeza, and L N Irwin
November 1972, Science (New York, N.Y.),
H P Young, and Z F Christian, and R Cabeza, and L N Irwin
September 1979, Journal of neurochemistry,
H P Young, and Z F Christian, and R Cabeza, and L N Irwin
October 1981, Canadian journal of physiology and pharmacology,
H P Young, and Z F Christian, and R Cabeza, and L N Irwin
July 1974, Biochimica et biophysica acta,
H P Young, and Z F Christian, and R Cabeza, and L N Irwin
June 1975, British journal of pharmacology,
H P Young, and Z F Christian, and R Cabeza, and L N Irwin
October 1978, Journal of neurochemistry,
H P Young, and Z F Christian, and R Cabeza, and L N Irwin
July 1976, Brain research,
H P Young, and Z F Christian, and R Cabeza, and L N Irwin
August 1977, Journal of neurochemistry,
Copied contents to your clipboard!