Sleep-wakefulness alterations in amygdala-kindled rats. 1998

Y H Raol, and B L Meti
Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.

OBJECTIVE Our aim was to study the relation between epilepsy and sleep-wakefulness cycles in the amygdala-kindling model of temporal lobe epilepsy. METHODS Adult male Wistar rats were electrically kindled through bipolar electrodes implanted in the anterior amygdala. Polysomnographic recordings were taken before and after kindled seizures for 6 h. For the studies on the effects of a single, full-blown seizure, recordings were taken immediately after the seizure and daily thereafter until the recordings returned to baseline values. For studies on the effects of five full-blown seizures, recordings were taken immediately after the fifth seizure and then on day 1, 2, 3, 5, 7, 14, 21, and 28. RESULTS Polysomnographic recordings taken immediately after the first full-blown seizure revealed an initial increase in the duration of deep slow-wave sleep (SII), a decrease in the light slow-wave sleep (SI) stage of non-rapid eye movement (NREM) sleep, and a decrease in the quiet wakefulness (W2) stage of wakefulness. All these parameters returned to baseline values after 24 h. The duration of rapid eye movement (REM) sleep increased and returned to the baseline value after 48 h. Five consecutive full-blown seizures caused an increase in the duration of SII from the day the seizures occured until day 28, whereas the duration of SI decreased for 72 h. The duration of REM sleep, decreased only on the day of the seizures and day 1, while decreases in the number of REM episodes were observed on the day of the seizure, day 2 and day 14. CONCLUSIONS Our study indicates that even a single, full-blown seizure can cause alterations in the architecture of sleep-wakefulness cycles for a short duration, and that multiple seizures produce long-term effects.

UI MeSH Term Description Entries
D007696 Kindling, Neurologic The repeated weak excitation of brain structures, that progressively increases sensitivity to the same stimulation. Over time, this can lower the threshold required to trigger seizures. Kindlings, Neurologic,Neurologic Kindling,Neurologic Kindlings
D008297 Male Males
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004833 Epilepsy, Temporal Lobe A localization-related (focal) form of epilepsy characterized by recurrent seizures that arise from foci within the TEMPORAL LOBE, most commonly from its mesial aspect. A wide variety of psychic phenomena may be associated, including illusions, hallucinations, dyscognitive states, and affective experiences. The majority of complex partial seizures (see EPILEPSY, COMPLEX PARTIAL) originate from the temporal lobes. Temporal lobe seizures may be classified by etiology as cryptogenic, familial, or symptomatic. (From Adams et al., Principles of Neurology, 6th ed, p321). Epilepsy, Benign Psychomotor, Childhood,Benign Psychomotor Epilepsy, Childhood,Childhood Benign Psychomotor Epilepsy,Epilepsy, Lateral Temporal,Epilepsy, Uncinate,Epilepsies, Lateral Temporal,Epilepsies, Temporal Lobe,Epilepsies, Uncinate,Lateral Temporal Epilepsies,Lateral Temporal Epilepsy,Temporal Lobe Epilepsies,Temporal Lobe Epilepsy,Uncinate Epilepsies,Uncinate Epilepsy
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012890 Sleep A readily reversible suspension of sensorimotor interaction with the environment, usually associated with recumbency and immobility. Sleep Habits,Sleeping Habit,Sleeping Habits,Habit, Sleep,Habit, Sleeping,Habits, Sleep,Habits, Sleeping,Sleep Habit
D014851 Wakefulness A state in which there is an enhanced potential for sensitivity and an efficient responsiveness to external stimuli. Wakefulnesses
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

Y H Raol, and B L Meti
October 1996, Experimental neurology,
Y H Raol, and B L Meti
August 2016, Basic & clinical pharmacology & toxicology,
Y H Raol, and B L Meti
September 2010, Epilepsia,
Y H Raol, and B L Meti
November 1998, Neuroscience letters,
Y H Raol, and B L Meti
May 1994, Pharmacology, biochemistry, and behavior,
Y H Raol, and B L Meti
January 1998, Alcohol and alcoholism (Oxford, Oxfordshire),
Y H Raol, and B L Meti
December 1982, Experimental neurology,
Y H Raol, and B L Meti
December 1990, Brain research,
Copied contents to your clipboard!