Characterization of atypical cells in the juvenile rat organ of corti after aminoglycoside ototoxicity. 1998

N Daudet, and P Vago, and C Ripoll, and G Humbert, and R Pujol, and M Lenoir
INSERM U 254, Université Montpellier I, Faculté de Médecine, France. ndaudet@infobiogen.fr

Hair cell regeneration is well documented in the inner ear sensory epithelia of lower vertebrates and birds and may occur in the vestibular organs of mammals. By contrast, hair cell loss in the mature mammalian cochlea is considered irreversible. However, recent reports have suggested that an attempt at hair cell regeneration could occur in vivo in aminoglycoside-lesioned cochleas from neonatal rats. After amikacin treatment, atypical cells with apical specialization reminiscent of early differentiating stereocilia are transiently present at the apex of the intoxicated cochleas but fail to differentiate as hair cells in later stages. In the present study, we used electronic microscopy, histochemistry, and confocal microscopy to investigate the cellular rearrangements in the amikacin-lesioned organ of Corti of rat pups. In addition, we used 5-bromo-2'-deoxyuridine immunocytochemistry to determine whether mitotic processes are involved in the formation of the atypical cells. The morphologic and molecular data suggest that atypical cells are not recovering hair cells, but share characteristics of immature hair cells and supporting cells. Proliferative cells were absent from the region occupied by atypical cells, suggesting that the latter did not arise through mitotic processes. Altogether, the present results support the hypothesis that atypical cells arise through direct transformation of some of the supporting cells that reorganize during hair cell degeneration.

UI MeSH Term Description Entries
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D010320 Parvalbumins Low molecular weight, calcium binding muscle proteins. Their physiological function is possibly related to the contractile process. Parvalbumin,Parvalbumin B
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D000583 Amikacin A broad-spectrum antibiotic derived from KANAMYCIN. It is reno- and oto-toxic like the other aminoglycoside antibiotics. A.M.K,Amikacin Sulfate,Amikacina Medical,Amikacina Normon,Amikafur,Amikalem,Amikason's,Amikayect,Amikin,Amiklin,Amukin,BB-K 8,BB-K8,Biclin,Biklin,Gamikal,Kanbine,Oprad,Yectamid,BB K 8,BB K8,BBK 8,BBK8,Medical, Amikacina,Normon, Amikacina,Sulfate, Amikacin

Related Publications

N Daudet, and P Vago, and C Ripoll, and G Humbert, and R Pujol, and M Lenoir
May 2000, Neuroreport,
N Daudet, and P Vago, and C Ripoll, and G Humbert, and R Pujol, and M Lenoir
November 1996, Acta oto-laryngologica,
N Daudet, and P Vago, and C Ripoll, and G Humbert, and R Pujol, and M Lenoir
January 1980, Scanning electron microscopy,
N Daudet, and P Vago, and C Ripoll, and G Humbert, and R Pujol, and M Lenoir
July 2017, Hearing research,
N Daudet, and P Vago, and C Ripoll, and G Humbert, and R Pujol, and M Lenoir
May 2013, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery,
N Daudet, and P Vago, and C Ripoll, and G Humbert, and R Pujol, and M Lenoir
January 1967, Acta oto-laryngologica,
N Daudet, and P Vago, and C Ripoll, and G Humbert, and R Pujol, and M Lenoir
January 2015, Frontiers in cellular neuroscience,
N Daudet, and P Vago, and C Ripoll, and G Humbert, and R Pujol, and M Lenoir
November 2018, Journal of cellular and molecular medicine,
N Daudet, and P Vago, and C Ripoll, and G Humbert, and R Pujol, and M Lenoir
October 1980, The Laryngoscope,
N Daudet, and P Vago, and C Ripoll, and G Humbert, and R Pujol, and M Lenoir
July 1997, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
Copied contents to your clipboard!