Cadmium-regulated genes from the nematode Caenorhabditis elegans. Identification and cloning of new cadmium-responsive genes by differential display. 1998

V H Liao, and J H Freedman
Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA.

The transition metal cadmium is a pervasive and persistent environmental contaminant that has been shown to be both a human toxicant and carcinogen. To inhibit cadmium-induced damage, cells respond by increasing the expression of genes encoding stress-response proteins. In most cases, the mechanism by which cadmium affects the expression of these genes remains unknown. It has been demonstrated in several instances that cadmium activates gene transcription through signal transduction pathways, mediated by protein kinase C, cAMP-dependent protein kinase, or calmodulin. A codicil is that cadmium should influence the expression of numerous genes. To investigate the ability of cadmium to affect gene transcription, the differential display technique was used to analyze gene expression in the nematode Caenorhabditis elegans. Forty-nine cDNAs whose steady-state levels of expression change 2-6-fold in response to cadmium exposure were identified. The nucleotide sequences of the majority of the differentially expressed cDNAs are identical to those of C. elegans cosmids, yeast artificial chromosomes, expressed sequence tags, or predicted genes. The translated amino acid sequences of several clones are identical to C. elegans metallothionein-1, HSP70, collagens, and rRNAs. In addition, C. elegans homologues of pyruvate carboxylase, DNA gyrase, beta-adrenergic receptor kinase, and human hypothetical protein KIAA0174 were identified. The translated amino acid sequences of the remaining differentially expressed cDNAs encode novel proteins.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003360 Cosmids Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles. Cosmid
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

V H Liao, and J H Freedman
April 1990, Nucleic acids research,
V H Liao, and J H Freedman
February 2008, Toxicological sciences : an official journal of the Society of Toxicology,
V H Liao, and J H Freedman
January 1998, Methods in molecular biology (Clifton, N.J.),
V H Liao, and J H Freedman
December 1998, Methods (San Diego, Calif.),
V H Liao, and J H Freedman
March 1999, Journal of radiation research,
V H Liao, and J H Freedman
January 1989, Gene,
V H Liao, and J H Freedman
July 1998, Gene,
V H Liao, and J H Freedman
December 2011, Environmental science & technology,
V H Liao, and J H Freedman
January 2001, International review of cytology,
Copied contents to your clipboard!