In vitro binding of H1 histone subtypes to nucleosomal organized mouse mammary tumor virus long terminal repeat promotor. 1998

H Talasz, and N Sapojnikova, and W Helliger, and H Lindner, and B Puschendorf
Institute of Medical Chemistry and Biochemistry, University of Innsbruck, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria.

The binding of all known linker histones, named H1a through H1e, including H1(0) and H1t, to a model chromatin complex based on a DNA fragment containing the mouse mammary tumor virus long terminal repeat promotor was systematically studied. As for the histone subtype H1b, we found a dissociation constant of 8-16 nM to a single mononucleosome (210 base pairs), whereas the binding constant of all other subtypes varied between 2 and 4 nM. Most of the H1 histones, namely H1a, H1c, H1d/e, and H1(0), completely aggregate polynucleosomes (1.3 kilobase pairs, 6 nucleosomes) at 270-360 nM, corresponding to a molar ratio of six to eight H1 molecules per reconstituted nucleosome. To form aggregates with the histones H1t and H1b, however, greater amounts of protein were required. Furthermore, our results show that specific types of in vivo phosphorylation of the linker histone tails influence both the binding to mononucleosomes and the aggregation of polynucleosomes. S phase-specific phosphorylation with one to three phosphate groups at specific sites in the C terminus influences neither the binding to a mononucleosome nor the aggregation of polynucleosomes. In contrast, highly phosphorylated H1 histones with four to five phosphate groups in the C and N termini reveal a very high binding affinity to a mononucleosome but a low chromatin aggregation capability. These findings suggest that specific S phase or mitotic phosphorylation sites act independently and have distinct functional roles.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008324 Mammary Tumor Virus, Mouse The type species of BETARETROVIRUS commonly latent in mice. It causes mammary adenocarcinoma in a genetically susceptible strain of mice when the appropriate hormonal influences operate. Bittner Virus,Mammary Cancer Virus,Mouse mammary tumor virus,Mammary Tumor Viruses, Mouse
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins

Related Publications

H Talasz, and N Sapojnikova, and W Helliger, and H Lindner, and B Puschendorf
August 1986, Molecular and cellular biology,
H Talasz, and N Sapojnikova, and W Helliger, and H Lindner, and B Puschendorf
March 1993, Nucleic acids research,
H Talasz, and N Sapojnikova, and W Helliger, and H Lindner, and B Puschendorf
December 1995, Journal of virology,
H Talasz, and N Sapojnikova, and W Helliger, and H Lindner, and B Puschendorf
June 2004, Cancer research,
H Talasz, and N Sapojnikova, and W Helliger, and H Lindner, and B Puschendorf
March 2002, Journal of virology,
H Talasz, and N Sapojnikova, and W Helliger, and H Lindner, and B Puschendorf
July 1989, Molecular and cellular endocrinology,
H Talasz, and N Sapojnikova, and W Helliger, and H Lindner, and B Puschendorf
November 2007, Journal of virology,
H Talasz, and N Sapojnikova, and W Helliger, and H Lindner, and B Puschendorf
April 1991, Biochemistry,
H Talasz, and N Sapojnikova, and W Helliger, and H Lindner, and B Puschendorf
September 1995, Molecular endocrinology (Baltimore, Md.),
H Talasz, and N Sapojnikova, and W Helliger, and H Lindner, and B Puschendorf
January 1999, Journal of virology,
Copied contents to your clipboard!