Dissociation of vitamin D3 and anti-estrogen mediated growth regulation in MCF-7 breast cancer cells. 1998

E Nolan, and M Donepudi, and K VanWeelden, and L Flanagan, and J Welsh
W. Alton Jones Cell Science Center, Lake Placid, New York 12946, USA.

Our studies have identified 1,25(OH)2D3 as a coordinate regulator of proliferation and apoptosis in breast cancer cells. In MCF-7 cells, 1,25(OH)2D3 down regulates the estrogen receptor (ER), suggesting that the effects of 1,25(OH)2D3 may be linked to disruption of estrogen regulated survival signals. Although studies have demonstrated that 1,25(OH)2D3 inhibits growth of ER negative breast cancer cells, previous data were generated by comparison of cell lines derived from heterogeneous human tumors and harboring diverse genetic alterations. To provide more conclusive evidence for independent growth regulatory pathways mediated by antiestrogens and 1,25(OH)2D3, we examined vitamin D3 sensitivity in MCf-7 cells selected for resistance to ICI 182, 780 (Zeneca, Macclesfield, UK). The clones we selected for resistance to ICI 182,780 retain functional VDR and undergo 1,25(OH)2D3 mediated growth arrest and apoptosis, in vitro and in vivo, despite loss of estrogen dependence. Cell cycle data indicate that treatment of parental or anti-estrogen resistant MCF-7 clones with 1,25(OH)2D3, in the presence or absence of ICI 182,780, increases the percentage of cells in G0/G1 while reducing the number of cells in S phase. In addition, 1,25(OH)2D3 induces characteristic features of apoptosis, including DNA fragmentation, in both parental and anti-estrogen resistant MCF-7 cells. Furthermore, we report that cells selected for vitamin D3 resistance retain sensitivity to ICI 182,780 mediated growth arrest and apoptosis. This work emphasizes that vitamin D3 compounds and anti-estrogens trigger growth arrest and apoptosis in breast cancer cells by distinct mechanisms, and that breast cancer cell sensitivity to 1,25(OH)2D3 is not diminished during the progression to estrogen independence.

UI MeSH Term Description Entries
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002762 Cholecalciferol Derivative of 7-dehydroxycholesterol formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. It differs from ERGOCALCIFEROL in having a single bond between C22 and C23 and lacking a methyl group at C24. Vitamin D 3,(3 beta,5Z,7E)-9,10-Secocholesta-5,7,10(19)-trien-3-ol,Calciol,Cholecalciferols,Vitamin D3
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004965 Estrogen Antagonists Compounds which inhibit or antagonize the action or biosynthesis of estrogenic compounds. Estradiol Antagonists,Antagonists, Estradiol,Antagonists, Estrogen
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077267 Fulvestrant An estradiol derivative and estrogen receptor antagonist that is used for the treatment of estrogen receptor-positive, locally advanced or metastatic breast cancer. 7-(9-(4,4,5,5,5-pentafluoropentylsulfinyl)nonyl)estra-1,3,5(10)-triene-3,17-diol,Faslodex,ICI 182,780,ICI 182780,ICI-182780,ZM 182780,ZM-182780,ICI182780,ZM182780
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

E Nolan, and M Donepudi, and K VanWeelden, and L Flanagan, and J Welsh
June 1999, Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology,
E Nolan, and M Donepudi, and K VanWeelden, and L Flanagan, and J Welsh
January 1999, Breast cancer research and treatment,
E Nolan, and M Donepudi, and K VanWeelden, and L Flanagan, and J Welsh
December 2002, Journal of molecular endocrinology,
E Nolan, and M Donepudi, and K VanWeelden, and L Flanagan, and J Welsh
January 1997, Oncology research,
E Nolan, and M Donepudi, and K VanWeelden, and L Flanagan, and J Welsh
March 1998, The Journal of biological chemistry,
E Nolan, and M Donepudi, and K VanWeelden, and L Flanagan, and J Welsh
December 2016, Phytotherapy research : PTR,
E Nolan, and M Donepudi, and K VanWeelden, and L Flanagan, and J Welsh
July 2000, Biochemical and biophysical research communications,
E Nolan, and M Donepudi, and K VanWeelden, and L Flanagan, and J Welsh
January 2007, The Journal of steroid biochemistry and molecular biology,
E Nolan, and M Donepudi, and K VanWeelden, and L Flanagan, and J Welsh
February 2007, Cancer chemotherapy and pharmacology,
E Nolan, and M Donepudi, and K VanWeelden, and L Flanagan, and J Welsh
November 2000, The Journal of steroid biochemistry and molecular biology,
Copied contents to your clipboard!