Mouse oocytes regulate granulosa cell steroidogenesis throughout follicular development. 1998

B C Vanderhyden, and E A Macdonald
a Ottawa Regional Cancer Centre, and Departments of Medicine, Cellular and Molecular Medicine, and Obstetrics&Gynecology, University of Ottawa, Ottawa, Ontario, Canada K1H 8L6.

Mouse oocytes secrete a factor(s) that inhibits progesterone and enhances estradiol production by granulosa cells. This study determined the ability of mouse oocytes to secrete this steroid-regulating factor during oocyte growth and the ability of granulosa cells to respond to the factor during follicular development. Oocyte-granulosa cell complexes from preantral and antral follicles were oocytectomized (OOX; oocytes microsurgically removed) and cultured for up to 48 h with FSH (150 ng/ml) and testosterone (500 nM). At all stages of development examined, OOX complexes produced more progesterone than did intact complexes, from 1.45-fold for early growing follicles to 23-fold for complexes from antral follicles. Significant estradiol production was restricted to intact complexes from late antral follicles. Progesterone accumulation by OOX complexes cocultured with oocytes was inhibited by all stages of oocytes examined, with maximal inhibition by fully grown oocytes. Ovulated complexes produced large quantities of progesterone, even though oocytes secreted progesterone-inhibitory factor, because of a desensitization of cumulus cells to the factor during their terminal differentiation. Even in the presence of abundant pregnenolone, OOX complexes showed reduced ability to produce and/or accumulate progesterone in the presence of oocytes, suggesting that the oocyte-secreted factor, either directly or indirectly, regulates the activity of 3beta-hydroxysteroid dehydrogenase and/or progesterone metabolism. These results demonstrate that oocytes secrete a factor with steroid-regulating activity in increasing amounts and/or potency during follicular development, but responsiveness of cumulus cells to this factor declines during luteinization.

UI MeSH Term Description Entries
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011284 Pregnenolone A 21-carbon steroid, derived from CHOLESTEROL and found in steroid hormone-producing tissues. Pregnenolone is the precursor to GONADAL STEROID HORMONES and the adrenal CORTICOSTEROIDS. 5-Pregnen-3-beta-ol-20-one,5 Pregnen 3 beta ol 20 one
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell

Related Publications

B C Vanderhyden, and E A Macdonald
July 1993, Endocrinology,
B C Vanderhyden, and E A Macdonald
November 1996, Zygote (Cambridge, England),
B C Vanderhyden, and E A Macdonald
August 2005, Biology of reproduction,
B C Vanderhyden, and E A Macdonald
May 2001, Developmental biology,
B C Vanderhyden, and E A Macdonald
December 1986, American journal of obstetrics and gynecology,
B C Vanderhyden, and E A Macdonald
August 1998, Human reproduction (Oxford, England),
B C Vanderhyden, and E A Macdonald
November 2020, Asian-Australasian journal of animal sciences,
B C Vanderhyden, and E A Macdonald
October 2018, Journal of assisted reproduction and genetics,
Copied contents to your clipboard!