Macrophages are the major source of tumor necrosis factor alpha in the porcine corpus luteum. 1998

Y Zhao, and J A Burbach, and K F Roby, and P F Terranova, and J D Brannian
Departments of Obstetrics and Gynecology, University of South Dakota School of Medicine, Sioux Falls, 57105-1570, USA.

This study was designed to determine the source of tumor necrosis factor (TNF) alpha within the porcine corpus luteum (CL). 1) Sections of frozen or paraffin-embedded CL from various stages of the estrous cycle were incubated with the following primary antibodies: anti-human recombinant TNFalpha, anti-porcine macrophage-specific antigen, or anti-alpha-actin (marker of pericyte and smooth muscle cells). Dolichos biflorus lectin-peroxidase was used as an endothelial cell label. Positive immunostaining for TNFalpha was apparent in porcine CL throughout the estrous cycle. TNFalpha immunoreactivity was primarily localized in cells along septal/vascular tracts, and exhibited spatial and temporal distribution similar to that of cells labeled with anti-macrophage antibodies. Large luteal cells exhibited weak staining for TNFalpha in paraffin sections, whereas microvascular endothelial cells were consistently negative in both frozen and paraffin sections. 2) Enriched subpopulations of macrophages, endothelial cells, and large and small luteal cells were isolated by density gradient and immunomagnetic bead separation techniques. TNFalpha secretion by each subpopulation was determined by measuring bioactive TNFalpha in incubation media using a specific in vitro bioassay. Macrophage subpopulations secreted up to 100-fold greater quantities of bioactive TNFalpha (up to 400 pg/10(6) cells) than did other subpopulations. In contrast, endothelial cell and small luteal cell subpopulations released very small amounts (< 8 pg/10(6) cells) of bioactive TNFalpha. Large luteal cells secreted slightly greater amounts of TNFalpha (10-15 pg/10(6) cells). Local macrophages appear to be the primary source of TNFalpha in the porcine CL.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D003338 Corpus Luteum The yellow body derived from the ruptured OVARIAN FOLLICLE after OVULATION. The process of corpus luteum formation, LUTEINIZATION, is regulated by LUTEINIZING HORMONE. Corpora Lutea,Lutea, Corpora
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004971 Estrus The period in the ESTROUS CYCLE associated with maximum sexual receptivity and fertility in non-primate female mammals.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D018189 Immunomagnetic Separation A cell-separation technique where magnetizable microspheres or beads are first coated with monoclonal antibody, allowed to search and bind to target cells, and are then selectively removed when passed through a magnetic field. Among other applications, the technique is commonly used to remove tumor cells from the marrow (BONE MARROW PURGING) of patients who are to undergo autologous bone marrow transplantation. Immunomagnetic Bead Technique,Immunomagnetic Purging,Immunomagnetic Cell Separation,Bead Technique, Immunomagnetic,Bead Techniques, Immunomagnetic,Cell Separation, Immunomagnetic,Cell Separations, Immunomagnetic,Immunomagnetic Bead Techniques,Immunomagnetic Cell Separations,Immunomagnetic Purgings,Immunomagnetic Separations,Purging, Immunomagnetic,Purgings, Immunomagnetic,Separation, Immunomagnetic,Separation, Immunomagnetic Cell,Separations, Immunomagnetic,Separations, Immunomagnetic Cell

Related Publications

Y Zhao, and J A Burbach, and K F Roby, and P F Terranova, and J D Brannian
January 2017, Domestic animal endocrinology,
Y Zhao, and J A Burbach, and K F Roby, and P F Terranova, and J D Brannian
April 2000, Molecular reproduction and development,
Y Zhao, and J A Burbach, and K F Roby, and P F Terranova, and J D Brannian
October 1999, Biology of reproduction,
Y Zhao, and J A Burbach, and K F Roby, and P F Terranova, and J D Brannian
January 2000, Biology of reproduction,
Y Zhao, and J A Burbach, and K F Roby, and P F Terranova, and J D Brannian
August 2018, Animal reproduction science,
Y Zhao, and J A Burbach, and K F Roby, and P F Terranova, and J D Brannian
December 1995, Biology of reproduction,
Y Zhao, and J A Burbach, and K F Roby, and P F Terranova, and J D Brannian
February 2003, Reproductive biology and endocrinology : RB&E,
Y Zhao, and J A Burbach, and K F Roby, and P F Terranova, and J D Brannian
April 2003, Biology of reproduction,
Y Zhao, and J A Burbach, and K F Roby, and P F Terranova, and J D Brannian
March 1988, Endocrinology,
Y Zhao, and J A Burbach, and K F Roby, and P F Terranova, and J D Brannian
January 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Copied contents to your clipboard!