Radiation absorbed doses to the walls of hollow organs. 1998

J B Stubbs, and J F Evans, and M G Stabin
NCO Cath, Inc., Roswell, Georgia, USA.

Many radiopharmaceuticals are excreted from the body through the gastrointestinal (GI) tract. The doses to the walls of the organs involved often are very significant. As significant fractions of the administered activity pass through them, these organs may receive the highest doses in the body for many radiopharmaceuticals. The absorbed dose to these walled organs, from activity in their contents, is typically calculated as 50% of the average absorbed dose to the contents, for nonpenetrating emissions. The internal surface of the GI tract, and to a certain extent the urinary bladder, is lined with a variable thickness of mucus. In addition, the radiosensitive cell populations (crypt or stem cells) are located at some depth into the mucosa. These two factors suggest that the surface dose, often used to characterize the clinically relevant absorbed doses for walled organs, may represent an overestimate in some cases. METHODS In this study, the radiation transport code MCNP was used to simulate the deposition of energy from nonpenetrating emissions of several radionuclides of interest: 90Y, 99mTc,123I and 131I. Absorbed doses as a function of distance from the wall-contents interface were calculated for three geometric shapes representing different organs along the routes of excretion. RESULTS The absorbed dose from nonpenetrating emissions to the sensitive cell populations was consistently lower than estimated by the standard model assumption. The simulated absorbed doses to radiosensitive cells in the GI tract for 99mTc and 123I are tenfold lower; those for 131I are fivefold lower and those for 90Y are 20% lower. CONCLUSIONS This study demonstrates that the normally reported dose to the walls of hollow organs probably should be modified to account for the attenuation of these nonpenetrating emissions in the linings of the walls. This study also demonstrates that Monte Carlo codes continue to be useful in the evaluation of the dose to sensitive cells in walled organs.

UI MeSH Term Description Entries
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D011835 Radiation Protection Methods and practices adopted to protect against RADIATION. Protection, Radiation
D011868 Radioisotopes Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Daughter Isotope,Daughter Nuclide,Radioactive Isotope,Radioactive Isotopes,Radiogenic Isotope,Radioisotope,Radionuclide,Radionuclides,Daughter Nuclides,Daugter Isotopes,Radiogenic Isotopes,Isotope, Daughter,Isotope, Radioactive,Isotope, Radiogenic,Isotopes, Daugter,Isotopes, Radioactive,Isotopes, Radiogenic,Nuclide, Daughter,Nuclides, Daughter
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013270 Stomach An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM. Stomachs

Related Publications

J B Stubbs, and J F Evans, and M G Stabin
January 1984, Swedish dental journal,
J B Stubbs, and J F Evans, and M G Stabin
March 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
J B Stubbs, and J F Evans, and M G Stabin
January 1999, Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology,
J B Stubbs, and J F Evans, and M G Stabin
February 1995, Clinical nuclear medicine,
J B Stubbs, and J F Evans, and M G Stabin
November 2019, Radiation protection dosimetry,
J B Stubbs, and J F Evans, and M G Stabin
January 1973, Radiobiologiia,
J B Stubbs, and J F Evans, and M G Stabin
October 1973, Meditsinskaia radiologiia,
J B Stubbs, and J F Evans, and M G Stabin
January 1987, Medical physics,
J B Stubbs, and J F Evans, and M G Stabin
July 2010, Journal of pharmacy & bioallied sciences,
J B Stubbs, and J F Evans, and M G Stabin
May 1986, The Journal of prosthetic dentistry,
Copied contents to your clipboard!