Nephrogenic diabetes insipidus. 1998

D G Bichet
Centre de recherche, Hôpital du Sacré-Coeur de Montréal and Department of Medicine, Université de Montréal, Québec, Canada.

In nephrogenic diabetes insipidus, the kidney is unable to concentrate urine despite normal or elevated concentrations of the antidiuretic hormone arginine vasopressin (AVP). In congenital nephrogenic diabetes insipidus (NDI), the obvious clinical manifestations of the disease, that is polyuria and polydipsia, are present at birth and need to be immediately recognized to avoid severe episodes of dehydration. Most (>90%) congenital NDI patients have mutations in the AVPR2 gene, the Xq28 gene coding for the vasopressin V2 (antidiuretic) receptor. In <10% of the families studied, congenital NDI has an autosomal recessive inheritance and mutations of the aquaporin-2 gene (AQP2), ie, the vasopressin-sensitive water channel, have been identified. When studied in vitro, most AVPR2 mutations lead to receptors that are trapped intracellularly and are unable to reach the plasma membrane. A minority of the mutant receptors reach the cell surface but are unable to bind AVP or to trigger an intracellular cyclic adenosine-monophosphate (cAMP) signal. Similarly AQP2 mutant proteins are trapped intracellularly and cannot be expressed at the luminal membrane. The acquired form of NDI is much more common than the congenital form, is almost always less severe, and is associated with downregulation of AQP2. The advances described here are examples of "bedside physiology" and provide diagnostic tools for physicians caring for these patients.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D017483 Receptors, Vasopressin Specific molecular sites or proteins on or in cells to which VASOPRESSINS bind or interact in order to modify the function of the cells. Two types of vasopressin receptor exist, the V1 receptor in the vascular smooth muscle and the V2 receptor in the kidneys. The V1 receptor can be subdivided into V1a and V1b (formerly V3) receptors. Antidiuretic Hormone Receptors,Receptors, V1,Receptors, V2,V1 Receptors,V2 Receptors,Vasopressin Receptors,8-Arg-Vasopressin Receptor,Antidiuretic Hormone Receptor,Antidiuretic Hormone Receptor 1a,Antidiuretic Hormone Receptor 1b,Arginine Vasopressin Receptor,Argipressin Receptor,Argipressin Receptors,Receptor, Arginine(8)-Vasopressin,Renal-Type Arginine Vasopressin Receptor,V1 Receptor,V1a Vasopressin Receptor,V1b Vasopressin Receptor,V2 Receptor,Vascular-Hepatic Type Arginine Vasopressin Receptor,Vasopressin Receptor,Vasopressin Receptor 1,Vasopressin Type 1A Receptor,Vasopressin V1a Receptor,Vasopressin V1b Receptor,Vasopressin V2 Receptor,Vasopressin V3 Receptor,8 Arg Vasopressin Receptor,Hormone Receptor, Antidiuretic,Hormone Receptors, Antidiuretic,Receptor, Antidiuretic Hormone,Receptor, Arginine Vasopressin,Receptor, Argipressin,Receptor, V1,Receptor, V2,Receptor, Vasopressin,Receptor, Vasopressin V1b,Receptor, Vasopressin V3,Receptors, Antidiuretic Hormone,Receptors, Argipressin,Renal Type Arginine Vasopressin Receptor,V1b Receptor, Vasopressin,Vascular Hepatic Type Arginine Vasopressin Receptor,Vasopressin Receptor, V1b
D018500 Diabetes Insipidus, Nephrogenic A genetic or acquired polyuric disorder characterized by persistent hypotonic urine and HYPOKALEMIA. This condition is due to renal tubular insensitivity to VASOPRESSIN and failure to reduce urine volume. It may be the result of mutations of genes encoding VASOPRESSIN RECEPTORS or AQUAPORIN-2; KIDNEY DISEASES; adverse drug effects; or complications from PREGNANCY. ADH-Resistant Diabetes Insipidus,Acquired Nephrogenic Diabetes Insipidus,Congenital Nephrogenic Diabetes Insipidus,Diabetes Insipidus Renalis,Diabetes Insipidus, Nephrogenic, Autosomal,Diabetes Insipidus, Nephrogenic, Type 1,Diabetes Insipidus, Nephrogenic, Type I,Diabetes Insipidus, Nephrogenic, Type II,Diabetes Insipidus, Nephrogenic, X-Linked,Nephrogenic Diabetes Insipidus,Nephrogenic Diabetes Insipidus, Type I,Nephrogenic Diabetes Insipidus, Type II,Vasopressin-Resistant Diabetes Insipidus
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory

Related Publications

D G Bichet
December 1999, Annales d'endocrinologie,
D G Bichet
September 1981, Nihon rinsho. Japanese journal of clinical medicine,
D G Bichet
January 1977, Nihon rinsho. Japanese journal of clinical medicine,
D G Bichet
January 1997, Ryoikibetsu shokogun shirizu,
D G Bichet
September 1964, Casopis lekaru ceskych,
D G Bichet
June 1963, British medical journal,
D G Bichet
July 1999, Seminars in nephrology,
D G Bichet
April 1996, Pediatrics in review,
D G Bichet
October 1979, Minerva medica,
D G Bichet
February 2019, Pediatric clinics of North America,
Copied contents to your clipboard!