Continuous treatment with morphine increases diazepam binding inhibitor mRNA in mouse brain. 1998

M Katsura, and A Hara, and A Higo, and C Tarumi, and Y Hibino, and S Ohkuma
Department of Pharmacology, Kawasaki Medical School, Matsushima, Kurashiki, Japan.

Effects of acute and chronic morphine treatment on the expression of diazepam binding inhibitor (DBI) mRNA in the mouse brain were examined. Cerebral DBI mRNA expression significantly increased in morphine-dependent mice, and this increase is more remarkable in morphine-withdrawn mice, whereas a single administration of morphine (50 mg/kg) produced no changes in the expression. Simultaneous administration of naloxone (3 mg/kg) with morphine completely abolished the increase in cerebral DBI mRNA expression observed in morphine-dependent and -withdrawn mice. These results indicate that a chronic functional interaction between morphine and opioid receptors has a critical role in increases in DBI mRNA expression.

UI MeSH Term Description Entries
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

M Katsura, and A Hara, and A Higo, and C Tarumi, and Y Hibino, and S Ohkuma
April 1998, Brain research. Molecular brain research,
M Katsura, and A Hara, and A Higo, and C Tarumi, and Y Hibino, and S Ohkuma
April 2008, The Tokai journal of experimental and clinical medicine,
M Katsura, and A Hara, and A Higo, and C Tarumi, and Y Hibino, and S Ohkuma
February 1994, Neuroscience letters,
M Katsura, and A Hara, and A Higo, and C Tarumi, and Y Hibino, and S Ohkuma
April 2004, Brain research. Molecular brain research,
M Katsura, and A Hara, and A Higo, and C Tarumi, and Y Hibino, and S Ohkuma
February 1998, Brain research. Molecular brain research,
M Katsura, and A Hara, and A Higo, and C Tarumi, and Y Hibino, and S Ohkuma
February 2017, Protein & cell,
M Katsura, and A Hara, and A Higo, and C Tarumi, and Y Hibino, and S Ohkuma
December 2001, Brain research. Molecular brain research,
M Katsura, and A Hara, and A Higo, and C Tarumi, and Y Hibino, and S Ohkuma
October 1984, Neuroscience letters,
M Katsura, and A Hara, and A Higo, and C Tarumi, and Y Hibino, and S Ohkuma
December 1991, Neuropharmacology,
M Katsura, and A Hara, and A Higo, and C Tarumi, and Y Hibino, and S Ohkuma
April 2008, The Tokai journal of experimental and clinical medicine,
Copied contents to your clipboard!