Inhibition of heat-shock protein 70 induction in intestinal cells overexpressing cyclooxygenase 2. 1998

R T Ethridge, and M R Hellmich, and R N DuBois, and B M Evers
Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA.

OBJECTIVE The cyclooxygenase (COX) enzymes catalyze the initial step of prostaglandin formation; the inducible form, COX-2, plays a role in inflammation. Heat-shock protein 70 (hsp70) is a stress-responsive gene important for cell survival; induction of hsp70 appears to be mediated, in part, by the prostaglandin pathway. We determined the effect of COX-2 overexpression on hsp70 induction in rat intestinal epithelial (RIE) cells. METHODS RIE cells transfected with COX-2 complementary DNA oriented in the sense (RIE-S) or antisense (RIE-AS) direction were subjected to a heat shock; RNA and protein were harvested and analyzed by Northern and Western blots, respectively. Gel shift assays were performed to assess DNA binding. RESULTS Both hsp70 messenger RNA and HSP70 protein levels were increased in the RIE-AS cells, whereas induction was markedly inhibited in the RIE-S cells after heat shock. Inhibition of heat-shock factor binding was noted in RIE-S cells, suggesting that heat-shock transcription factor regulation may explain the inhibition of hsp70. The COX-2 selective inhibitor, NS-398, reversed the effects of COX-2 overexpression. CONCLUSIONS The results support a functional role for the prostaglandin/COX pathway in the induction of hsp70. The findings underscore a potential regulatory mechanism involving an inverse relationship between COX-2 expression and hsp70 induction.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009578 Nitrobenzenes BENZENE derivatives carrying nitro group substituents.
D010544 Peroxidases Ovoperoxidase
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013449 Sulfonamides A group of compounds that contain the structure SO2NH2. Sulfonamide,Sulfonamide Mixture,Sulfonamide Mixtures,Mixture, Sulfonamide,Mixtures, Sulfonamide
D016861 Cyclooxygenase Inhibitors Compounds or agents that combine with cyclooxygenase (PROSTAGLANDIN-ENDOPEROXIDE SYNTHASES) and thereby prevent its substrate-enzyme combination with arachidonic acid and the formation of eicosanoids, prostaglandins, and thromboxanes. Cyclo-Oxygenase Inhibitor,Cyclooxygenase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitors,Prostaglandin Synthase Inhibitor,Prostaglandin Synthase Inhibitors,Prostaglandin Synthesis Antagonist,Prostaglandin Synthesis Antagonists,Cyclo-Oxygenase Inhibitors,Inhibitors, Cyclo-Oxygenase,Inhibitors, Cyclooxygenase,Inhibitors, Prostaglandin Synthase,Inhibitors, Prostaglandin-Endoperoxide Synthase,Antagonist, Prostaglandin Synthesis,Antagonists, Prostaglandin Synthesis,Cyclo Oxygenase Inhibitor,Cyclo Oxygenase Inhibitors,Inhibitor, Cyclo-Oxygenase,Inhibitor, Cyclooxygenase,Inhibitor, Prostaglandin Synthase,Inhibitors, Cyclo Oxygenase,Inhibitors, Prostaglandin Endoperoxide Synthase,Synthase Inhibitor, Prostaglandin,Synthesis Antagonist, Prostaglandin
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D051546 Cyclooxygenase 2 An inducibly-expressed subtype of prostaglandin-endoperoxide synthase. It plays an important role in many cellular processes and INFLAMMATION. It is the target of COX2 INHIBITORS. COX-2 Prostaglandin Synthase,Cyclo-Oxygenase II,Cyclooxygenase-2,PGHS-2,PTGS2,Prostaglandin H Synthase-2,COX 2 Prostaglandin Synthase,Cyclo Oxygenase II,Prostaglandin H Synthase 2,Prostaglandin Synthase, COX-2,Synthase, COX-2 Prostaglandin

Related Publications

R T Ethridge, and M R Hellmich, and R N DuBois, and B M Evers
April 2007, Naunyn-Schmiedeberg's archives of pharmacology,
R T Ethridge, and M R Hellmich, and R N DuBois, and B M Evers
November 2000, Transplantation proceedings,
R T Ethridge, and M R Hellmich, and R N DuBois, and B M Evers
October 2002, American journal of physiology. Cell physiology,
R T Ethridge, and M R Hellmich, and R N DuBois, and B M Evers
April 2009, Journal of medicinal chemistry,
R T Ethridge, and M R Hellmich, and R N DuBois, and B M Evers
September 2008, Neurobiology of learning and memory,
R T Ethridge, and M R Hellmich, and R N DuBois, and B M Evers
February 2004, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
R T Ethridge, and M R Hellmich, and R N DuBois, and B M Evers
January 2009, Digestion,
R T Ethridge, and M R Hellmich, and R N DuBois, and B M Evers
February 1996, The American journal of physiology,
R T Ethridge, and M R Hellmich, and R N DuBois, and B M Evers
October 1999, Kidney international,
R T Ethridge, and M R Hellmich, and R N DuBois, and B M Evers
July 2015, Glia,
Copied contents to your clipboard!