Inhibition of human hepatitis B virus replication by AT-61, a phenylpropenamide derivative, alone and in combination with (-)beta-L-2',3'-dideoxy-3'-thiacytidine. 1998

R W King, and S K Ladner, and T J Miller, and K Zaifert, and R B Perni, and S C Conway, and M J Otto
Avid Therapeutics, Inc., Philadelphia, Pennsylvania 19104, USA. ROBERT.W.KING@DUPONTPHARMA.COM

AT-61, a member of a novel class of phenylpropenamide derivatives, was found to be a highly selective and potent inhibitor of human hepatitis B virus (HBV) replication in four different human hepatoblastoma cell lines which support the replication of HBV (i.e., HepAD38, HepAD79, 2.2.15, and transiently transfected HepG2 cells). This compound was equally effective at inhibiting both the formation of intracellular immature core particles and the release of extracellular virions, with 50% effective concentrations ranging from 0.6 to 5.7 microM. AT-61 (27 microM) was able to reduce the amount of HBV covalently closed circular DNA found in the nuclei of HepAD38 cells by >99%. AT-61 at concentrations of >27 microM had little effect on the amount of viral RNA found within the cytoplasms of induced HepAD38 cells but reduced the number of immature virions which contained pregenomic RNA by >99%. The potency of AT-61 was not affected by one of the mutations responsible for (-)-beta-L-2', 3'-dideoxy-3' thiacytidine (3TC) resistance in HBV, and AT-61 acted synergistic with 3TC to inhibit HBV replication. AT-61 (81 microM) was not cytotoxic or antiproliferative to several cell lines and had no antiviral effect on woodchuck or duck HBV, human immunodeficiency virus type 1, herpes simplex virus type 1, vesicular stomatitis virus, or Newcastle disease virus. Therefore, we concluded that the antiviral activity of AT-61 is specific for HBV replication and most likely occurs at one of the steps between the synthesis of viral RNA and the packaging of pregenomic RNA into immature core particles.

UI MeSH Term Description Entries
D010948 Viral Plaque Assay Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE. Bacteriophage Plaque Assay,Assay, Bacteriophage Plaque,Assay, Viral Plaque,Assays, Bacteriophage Plaque,Assays, Viral Plaque,Bacteriophage Plaque Assays,Plaque Assay, Bacteriophage,Plaque Assay, Viral,Plaque Assays, Bacteriophage,Plaque Assays, Viral,Viral Plaque Assays
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006515 Hepatitis B virus The type species of the genus ORTHOHEPADNAVIRUS which causes human HEPATITIS B and is also apparently a causal agent in human HEPATOCELLULAR CARCINOMA. The Dane particle is an intact hepatitis virion, named after its discoverer. Non-infectious spherical and tubular particles are also seen in the serum. Dane Particle,Hepatitis Virus, Homologous Serum,B virus, Hepatitis,Hepatitis B viruses,Particle, Dane,viruses, Hepatitis B
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000577 Amides Organic compounds containing the -CO-NH2 radical. Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (From Grant & Hackh's Chemical Dictionary, 5th ed) Amide
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral

Related Publications

R W King, and S K Ladner, and T J Miller, and K Zaifert, and R B Perni, and S C Conway, and M J Otto
July 1995, Antimicrobial agents and chemotherapy,
R W King, and S K Ladner, and T J Miller, and K Zaifert, and R B Perni, and S C Conway, and M J Otto
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
R W King, and S K Ladner, and T J Miller, and K Zaifert, and R B Perni, and S C Conway, and M J Otto
July 1994, Journal of medicinal chemistry,
R W King, and S K Ladner, and T J Miller, and K Zaifert, and R B Perni, and S C Conway, and M J Otto
July 1992, The Journal of biological chemistry,
R W King, and S K Ladner, and T J Miller, and K Zaifert, and R B Perni, and S C Conway, and M J Otto
November 1992, The Journal of biological chemistry,
R W King, and S K Ladner, and T J Miller, and K Zaifert, and R B Perni, and S C Conway, and M J Otto
March 1996, Antimicrobial agents and chemotherapy,
R W King, and S K Ladner, and T J Miller, and K Zaifert, and R B Perni, and S C Conway, and M J Otto
January 1994, Biochemical pharmacology,
R W King, and S K Ladner, and T J Miller, and K Zaifert, and R B Perni, and S C Conway, and M J Otto
September 1991, Acta virologica,
R W King, and S K Ladner, and T J Miller, and K Zaifert, and R B Perni, and S C Conway, and M J Otto
January 1998, Antiviral research,
R W King, and S K Ladner, and T J Miller, and K Zaifert, and R B Perni, and S C Conway, and M J Otto
May 1997, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!