Synaptic inhibitory effects of edrophonium on sympathetic ganglionic transmission. 1998

R D Stein, and S B Backman, and B Collier, and C Polosa
Department of Anaesthesia, Royal Victoria Hospital, Montreal, Quebec, Canada.

OBJECTIVE To evaluate the effect of edrophonium on synaptic transmission in the superior cervical ganglion. METHODS In anaesthetized rats the effect of edrophonium on synaptic transmission was studied in vitro by testing whether it blocks the compound action potential recorded from postganglionic fibres evoked by stimulation of preganglionic axons. The superior cervical ganglion was excised and the cervical sympathetic trunk and internal carotid nerve were used for stimulating and recording, respectively. Drugs superfused included edrophonium (0.1-500 microM), neostigmine (0.1-10 microM), and muscarinic M1 and M2 antagonists pirenzepine and AFDX-116 (200 nM-10 microM), respectively. To evaluate a presynaptic action, the effect of edrophonium on basal and high-K+ (35 mM) evoked release of [3H]ACh from the superior cervical ganglion was studied in vitro. To evaluate a postsynaptic action, edrophonium's effect on postganglionic nerve discharge in response to arterial injection of ACh (100 micrograms) into the superior cervical ganglion was determined in vivo. RESULTS Edrophonium (10-500 microM) decreased the compound action potential amplitude (ED50 163.5 microM). A decrease was not produced by neostigmine, nor was it reversed by pirenzepine or AFDX-116. Edrophonium blocked postganglionic cell firing in response to exogenously administered ACh. Although edrophonium did not affect basal or high-K+ evoked ACh release, when the evoked increase was calculated as a multiple of the basal release, it caused approximately a 30% (P < 0.005) reduction. CONCLUSIONS Edrophonium blocks ganglionic cholinergic transmission postsynaptically and, possibly, presynaptically. The mechanism(s) by which this occurs does not appear to involve inhibition of cholinesterase, or activation of M1 or M2 receptor subtypes.

UI MeSH Term Description Entries
D009388 Neostigmine A cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants such as gallamine and tubocurarine. Neostigmine, unlike PHYSOSTIGMINE, does not cross the blood-brain barrier. Synstigmin,Neostigmine Bromide,Neostigmine Methylsulfate,Polstigmine,Proserine,Prostigmin,Prostigmine,Prozerin,Syntostigmine,Bromide, Neostigmine,Methylsulfate, Neostigmine
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010276 Parasympatholytics Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS. Antispasmodic,Antispasmodic Agent,Antispasmodic Drug,Antispasmodics,Parasympathetic-Blocking Agent,Parasympathetic-Blocking Agents,Parasympatholytic,Parasympatholytic Agent,Parasympatholytic Drug,Spasmolytic,Spasmolytics,Antispasmodic Agents,Antispasmodic Drugs,Antispasmodic Effect,Antispasmodic Effects,Parasympatholytic Agents,Parasympatholytic Drugs,Parasympatholytic Effect,Parasympatholytic Effects,Agent, Antispasmodic,Agent, Parasympathetic-Blocking,Agent, Parasympatholytic,Agents, Antispasmodic,Agents, Parasympathetic-Blocking,Agents, Parasympatholytic,Drug, Antispasmodic,Drug, Parasympatholytic,Drugs, Antispasmodic,Drugs, Parasympatholytic,Effect, Antispasmodic,Effect, Parasympatholytic,Effects, Antispasmodic,Effects, Parasympatholytic,Parasympathetic Blocking Agent,Parasympathetic Blocking Agents
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D010890 Pirenzepine An antimuscarinic agent that inhibits gastric secretion at lower doses than are required to affect gastrointestinal motility, salivary, central nervous system, cardiovascular, ocular, and urinary function. It promotes the healing of duodenal ulcers and due to its cytoprotective action is beneficial in the prevention of duodenal ulcer recurrence. It also potentiates the effect of other antiulcer agents such as CIMETIDINE and RANITIDINE. It is generally well tolerated by patients. Gastrotsepin,Gastrozepin,L-S 519,LS-519,Piren-Basan,Pirenzepin,Pirenzepin Von Ct,Pirenzepin-Ratiopharm,Pirenzepine Dihydrochloride,Pyrenzepine,Ulcoprotect,Ulgescum,Dihydrochloride, Pirenzepine,LS 519,LS519,Piren Basan,Pirenzepin Ratiopharm,Von Ct, Pirenzepin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D004491 Edrophonium A rapid-onset, short-acting cholinesterase inhibitor used in cardiac arrhythmias and in the diagnosis of myasthenia gravis. It has also been used as an antidote to curare principles. Edrophonium Chloride,Edrophonium Bromide,Edroponium,Tensilon,Bromide, Edrophonium,Chloride, Edrophonium
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50

Related Publications

R D Stein, and S B Backman, and B Collier, and C Polosa
June 1961, Science (New York, N.Y.),
R D Stein, and S B Backman, and B Collier, and C Polosa
December 1982, Anesthesiology,
R D Stein, and S B Backman, and B Collier, and C Polosa
September 1973, Anesthesiology,
R D Stein, and S B Backman, and B Collier, and C Polosa
October 1988, Anesthesiology,
R D Stein, and S B Backman, and B Collier, and C Polosa
October 1983, Sheng li ke xue jin zhan [Progress in physiology],
R D Stein, and S B Backman, and B Collier, and C Polosa
January 1972, Research communications in chemical pathology and pharmacology,
R D Stein, and S B Backman, and B Collier, and C Polosa
January 1956, Journal de physiologie,
R D Stein, and S B Backman, and B Collier, and C Polosa
January 1953, Therapie,
R D Stein, and S B Backman, and B Collier, and C Polosa
January 1995, Anesthesia and analgesia,
R D Stein, and S B Backman, and B Collier, and C Polosa
January 1990, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie,
Copied contents to your clipboard!