Induction of mitogen-activated protein kinase phosphatase-1 by arachidonic acid in vascular smooth muscle cells. 1998

B Metzler, and Y Hu, and G Sturm, and G Wick, and Q Xu
Institute for Biomedical Aging Research, Austrian Academy of Sciences, A-6020 Innsbruck, Austria.

Arachidonic acid (AA) and its metabolites play important roles in a variety of biological processes, such as signal transduction, contraction, chemotaxis, and cell proliferation and differentiation. It was demonstrated recently that AA can activate mitogen-activated protein kinases (MAPKs), which are crucial for transducing signals initiating cell growth and apoptosis. Here we studied the effect of AA on the induction of MAPK phosphatase-1 (MKP-1) in vascular smooth muscle cells (VSMCs) and found that AA stimulated induction of MKP-1 mRNA and proteins in VSMCs in a time- and dose-dependent manner. Specific inhibitors of cyclooxygenase-, lipoxygenase-, and cytochrome P450-dependent metabolism did not affect AA-induced MKP-1 expression, indicating that eicosanoid biosynthesis was not involved in this process. The glutathione precursor N-acetylcysteine, an antioxidant, abolished AA-stimulated MKP-1 gene expression, whereas inhibition of protein kinase C by calphostin C had no influence on MKP-1 induction. VSMC pretreatment with genistein, a tyrosine kinase inhibitor, completely blocked AA-stimulated MKP-1 induction. MAPK kinase inhibitor PD 98059 did abolish AA-stimulated activation of extracellular signal-regulated kinases but not MKP-1 induction. Furthermore, agonists that increase AA release stimulated MKP-1 induction and activation of MAPKs, including extracellular signal-regulated kinases and c-Jun NH2-terminal protein kinases or stress-activated protein kinases. Taken together, our findings demonstrate that AA induced MKP-1 expression in VSMCs via activation of tyrosine kinases involving AA-induced free radical generation, suggesting an important role for MKP-1 in the regulation of AA-initiated signal transduction in VSMCs.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion

Related Publications

B Metzler, and Y Hu, and G Sturm, and G Wick, and Q Xu
October 1998, Hypertension (Dallas, Tex. : 1979),
B Metzler, and Y Hu, and G Sturm, and G Wick, and Q Xu
June 2016, American journal of physiology. Cell physiology,
B Metzler, and Y Hu, and G Sturm, and G Wick, and Q Xu
September 2003, Biochemical pharmacology,
B Metzler, and Y Hu, and G Sturm, and G Wick, and Q Xu
March 2009, European journal of pharmacology,
B Metzler, and Y Hu, and G Sturm, and G Wick, and Q Xu
June 2004, American journal of physiology. Cell physiology,
B Metzler, and Y Hu, and G Sturm, and G Wick, and Q Xu
December 1994, The Journal of biological chemistry,
B Metzler, and Y Hu, and G Sturm, and G Wick, and Q Xu
July 2000, Biochimica et biophysica acta,
B Metzler, and Y Hu, and G Sturm, and G Wick, and Q Xu
October 1996, The Journal of clinical investigation,
B Metzler, and Y Hu, and G Sturm, and G Wick, and Q Xu
March 2001, Life sciences,
B Metzler, and Y Hu, and G Sturm, and G Wick, and Q Xu
January 1996, The American journal of physiology,
Copied contents to your clipboard!