Caenorhabditis elegans EGL-1 disrupts the interaction of CED-9 with CED-4 and promotes CED-3 activation. 1998

L del Peso, and V M González, and G Núñez
Department of Pathology and Comprehensive Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.

In the nematode Caenorhabditis elegans, programmed cell death is implemented by the protease CED-3 whose activity is inhibited by CED-9 through physical associations with the regulator CED-4. The product of a recently described gene, egl-1, binds to and inhibits CED-9. In the present studies, we have addressed the molecular mechanism by which EGL-1 regulates CED-9 function and promotes cell death. Expression of CED-4 and CED-3 resulted in decreased survival and apoptosis of mammalian cells, activities that could be inhibited by CED-9. Importantly, this protective effect of CED-9 was antagonized by EGL-1. Immunoprecipitation analysis showed that EGL-1 binding to CED-9 disrupts the association between CED-4 and CED-9, an activity that required the BH3 motif of EGL-1. Consistent with these results, expression of EGL-1 promoted CED-4-dependent processing of CED-3, and this activity of EGL-1 was mediated through inhibition of CED-9. In mammalian cells, CED-9 is known to target the subcellular localization of CED-4 from the cytosol to intracellular membranes. Expression of EGL-1 resulted in redistribution of CED-4 from intracellular membranes, where it co-localized with CED-9, to the cytoplasm, providing further evidence that EGL-1 regulates CED-4 through CED-9. Finally, the levels of EGL-1 were greatly enhanced by co-expression of CED-9 in both mammalian cells and in a cell-free system, suggesting a role for CED-9 in the expression and/or stabilization of EGL-1. These studies provide a mechanism for how EGL-1 functions to antagonize pro-survival of CED-9 and to promote CED-3 activation and programmed cell death.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L del Peso, and V M González, and G Núñez
August 1997, The Journal of biological chemistry,
L del Peso, and V M González, and G Núñez
September 2000, The Journal of biological chemistry,
L del Peso, and V M González, and G Núñez
April 1997, FEBS letters,
L del Peso, and V M González, and G Núñez
July 1997, Current biology : CB,
L del Peso, and V M González, and G Núñez
May 2009, Current biology : CB,
L del Peso, and V M González, and G Núñez
June 2006, Journal of cell science,
L del Peso, and V M González, and G Núñez
February 1997, Nature,
L del Peso, and V M González, and G Núñez
January 2006, Cell cycle (Georgetown, Tex.),
Copied contents to your clipboard!