Regulation of glyceraldehyde-3-phosphate dehydrogenase in differentiating HD3 cells. 1998

M Grdisa
Division of Molecular Medicine, Rudjer Bosković Institute, Zagreb, Croatia. grdisa@rudjer.irb.hr

Red blood cells usually replenish their ATP pools by glycolysis, fueled by glucose imported via the cell membrane. Mature red cells of some species (e.g. pig, chicken) have, however, been reported to show very low glucose transport. The subject of this study was the possible dependency of the level of a key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAD) on glucose transporter activity during the maturation of chicken red cells. The chicken pronormoblast cell line, HD3, was used as a model system. These cells contain higher levels of GAD and glucose transporter activities than normal chicken bone marrow cells, but reduce their levels during maturation. In an attempt to assess whether the decrease in GAD activity is regulated by the glucose transport, the chicken GLUT3 expressed under the control of viral promoter was introduced into HD3 cells by retroviral infection (pDOL-cGT3). Upon cell differentiation and maturation, both cells with and without the exogenous transporter decreased GAD activity. Butyric acid did not affect the regulation of GAD activity upon differentiation. These results show that the development of chicken red cells is manifested by reduction of their GAD activity and that this is not affected by their sugar transporter activity. The very low GAD activity in embryonic chicken red cells is thus due to a loss of this activity at an early stage in their development. Because of the very low glucose transport and GAD activities in mature chicken red cells, rates of glycolysis are likely to be low and suggesting an alternative pathway for ATP production in these cells.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D050260 Carbohydrate Metabolism Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES. Metabolism, Carbohydrate
D020148 Butyric Acid A four carbon acid, CH3CH2CH2COOH, with an unpleasant odor that occurs in butter and animal fat as the glycerol ester. Butanoic Acid,Butyric Acid Magnesium Salt,Butyric Acid, Sodium Salt,Magnesium Butyrate,Magnesium Dibutyrate,Sodium Butyrate,Acid, Butanoic,Acid, Butyric,Butyrate, Magnesium,Butyrate, Sodium,Dibutyrate, Magnesium

Related Publications

M Grdisa
February 1998, The American journal of physiology,
M Grdisa
June 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
M Grdisa
September 1975, European journal of biochemistry,
M Grdisa
July 1985, The American journal of physiology,
M Grdisa
April 1993, Biokhimiia (Moscow, Russia),
M Grdisa
February 1967, Archives of biochemistry and biophysics,
M Grdisa
March 1975, Journal of biochemistry,
Copied contents to your clipboard!