Effect of hindlimb unloading on interlimb coordination during treadmill locomotion in the rat. 1998

M H Canu, and M Falempin
Laboratoire de Plasticité Neuromusculaire, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France.

Effects of hindlimb unloading on interlimb coordination were examined in adult rats walking on a treadmill at moderate speed. In the first group of animals, the electromyographic activity (EMG) of soleus muscle of both hindlimbs was recorded after 7 and 14 days of unloading. In the second group, the EMG was recorded daily until the 14th day of unloading. The general organization of locomotion was preserved in the two groups whatever the duration of the unloading. The step cycles of the two hindlimbs were always strictly alternating. However, the locomotor pattern was very irregular. A lateral instability was observed. It was accompanied by an abduction of the hindlimbs, and frequent hyperextensions of the ankle when walking. The EMG analysis showed an increase in step cycle duration and in coactivation duration of the soleus muscles (i.e. in the double stance duration). In the rats recorded daily, mean EMG was dramatically reduced the 1st day of unloading, suggesting a decrease in the neural drive. Taken together, these data indicate that 14 days of hindlimb unloading can alter the neuromuscular pattern during locomotion. It is proposed that these changes are related to changes in the peripheral sensory information.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008297 Male Males
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D011434 Proprioception Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE. Labyrinthine Sense,Position Sense,Posture Sense,Sense of Equilibrium,Vestibular Sense,Sense of Position,Equilibrium Sense,Sense, Labyrinthine,Sense, Position,Sense, Posture,Sense, Vestibular
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005684 Gait Manner or style of walking. Gaits
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000843 Ankle Joint The joint that is formed by the inferior articular and malleolar articular surfaces of the TIBIA; the malleolar articular surface of the FIBULA; and the medial malleolar, lateral malleolar, and superior surfaces of the TALUS. Ankle Syndesmosis,Articulatio talocruralis,Distal Tibiofibular Joint,Inferior Tibiofibular Joint,Talocrural Joint,Tibiofibular Ankle Syndesmosis,Tibiofibular Syndesmosis,Ankle Joints,Ankle Syndesmoses,Ankle Syndesmosis, Tibiofibular,Distal Tibiofibular Joints,Inferior Tibiofibular Joints,Joint, Ankle,Joints, Ankle,Syndesmosis, Ankle,Talocrural Joints,Tibiofibular Ankle Syndesmoses,Tibiofibular Joint, Distal,Tibiofibular Syndesmoses

Related Publications

M H Canu, and M Falempin
September 1985, [Hokkaido igaku zasshi] The Hokkaido journal of medical science,
M H Canu, and M Falempin
January 1990, Experimental brain research,
M H Canu, and M Falempin
June 2017, Journal of neurophysiology,
M H Canu, and M Falempin
January 1994, Experimental brain research,
M H Canu, and M Falempin
May 2006, Journal of neuroscience methods,
M H Canu, and M Falempin
July 1994, The European journal of neuroscience,
Copied contents to your clipboard!