Stratum corneum, corneodesmosomes and ex vivo percutaneous penetration. 1998

M Haftek, and M H Teillon, and D Schmitt
INSERM U.346/CNRS, Human Skin and Immunity, E. Herriot Hospital, Lyon, France. Marek.Haftek@lyon151.inserm.fr

The stratum corneum is composed of cornified keratinocytes, joined together with corneodesmosomes and embedded in the relatively hydrophobic intercellular substance. Formation of this horny layer and its constant desquamation are fundamental processes leading to the establishment of an efficient epidermal barrier. We examined structural changes occurring in the stratum corneum ex vivo, in order to better understand the mechanisms regulating corneocyte desquamation at the epidermal surface and influencing percutaneous penetration of exogenous substances. Morphologic modifications were induced by occlusion, increasing the tissue hydration, or by application of propylene glycol, a hydrophilic solvent of small molecular size. Distribution of the major epidermal antigens, markers of terminal differentiation, was studied immunohistochemically and showed no modification related to the tissue alteration. Skin samples were fixed in paraformaldehyde and either postfixed in OsO4 and embedded in Epon or postfixed in RuO4 and embedded in epoxy and acrylic resins. Structural composition and spatial organization of the elements present in the intercorneocyte spaces were evaluated ultrastructurally, with special attention paid to the fate of corneodesmosomes. Our results suggest that the spontaneous organization of lipids excreted into the intercellular spaces and constitution of the lamellar multilayers in the lower stratum corneum are at the origin of partition of the intercellular compartment to the hydrophobic and hydrophilic domains. The latter, compatible with the proteinic contents, seem to be displaced by the hydrophobic components undergoing reorganization, towards the invariable hydrophilic foci represented by corneodesmosomes. This mechanism may be involved in the delivery of proteolytic enzymes, thus contributing to the progressive degradation of corneodesmosomal proteins.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D009993 Osmium Tetroxide (T-4)-Osmium oxide (OsO4). A highly toxic and volatile oxide of osmium used in industry as an oxidizing agent. It is also used as a histological fixative and stain and as a synovectomy agent in arthritic joints. Its vapor can cause eye, skin, and lung damage. Osmic Acid,Acid, Osmic,Tetroxide, Osmium
D003896 Desmosomes A type of junction that attaches one cell to its neighbor. One of a number of differentiated regions which occur, for example, where the cytoplasmic membranes of adjacent epithelial cells are closely apposed. It consists of a circular region of each membrane together with associated intracellular microfilaments and an intercellular material which may include, for example, mucopolysaccharides. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990; Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Desmosome
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012869 Skin Absorption Uptake of substances through the SKIN. Absorption, Skin,Intracutaneous Absorption,Intradermal Absorption,Percutaneous Absorption,Transcutaneous Absorption,Transdermal Absorption,Absorption, Intracutaneous,Absorption, Intradermal,Absorption, Percutaneous,Absorption, Transcutaneous,Absorption, Transdermal,Absorptions, Intracutaneous,Absorptions, Intradermal,Absorptions, Percutaneous,Absorptions, Skin,Absorptions, Transcutaneous,Absorptions, Transdermal,Intracutaneous Absorptions,Intradermal Absorptions,Percutaneous Absorptions,Skin Absorptions,Transcutaneous Absorptions,Transdermal Absorptions
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte
D016610 Tissue Embedding The technique of placing cells or tissue in a supporting medium so that thin sections can be cut using a microtome. The medium can be paraffin wax (PARAFFIN EMBEDDING) or plastics (PLASTIC EMBEDDING) such as epoxy resins. Embedding, Tissue

Related Publications

M Haftek, and M H Teillon, and D Schmitt
September 2011, Cutaneous and ocular toxicology,
M Haftek, and M H Teillon, and D Schmitt
January 1992, Yao xue xue bao = Acta pharmaceutica Sinica,
M Haftek, and M H Teillon, and D Schmitt
June 2022, International journal of cosmetic science,
M Haftek, and M H Teillon, and D Schmitt
May 2011, European journal of dermatology : EJD,
M Haftek, and M H Teillon, and D Schmitt
September 1983, The Journal of investigative dermatology,
M Haftek, and M H Teillon, and D Schmitt
January 1991, Skin pharmacology : the official journal of the Skin Pharmacology Society,
M Haftek, and M H Teillon, and D Schmitt
May 2006, Biochimica et biophysica acta,
M Haftek, and M H Teillon, and D Schmitt
November 2009, Journal of photochemistry and photobiology. B, Biology,
M Haftek, and M H Teillon, and D Schmitt
January 2009, Skin pharmacology and physiology,
M Haftek, and M H Teillon, and D Schmitt
January 1990, Archives of dermatological research,
Copied contents to your clipboard!