Modification of ischemia-reperfusion-induced changes in cardiac sarcoplasmic reticulum by preconditioning. 1998

M Osada, and T Netticadan, and K Tamura, and N S Dhalla
Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Center, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.

To examine the effects of ischemic preconditioning on ischemia-reperfusion-induced changes in the sarcoplasmic reticulum (SR) function, isolated rat hearts were either perfused with a control medium for 30 min or preconditioned with three episodes of 5-min ischemia and 5-min reperfusion before sustained ischemia for 30 min followed by reperfusion for 30 min was induced. Preconditioning itself depressed cardiac function (left ventricular developed pressure, peak rate of contraction, and peak rate of relaxation) and SR Ca2+-release and -uptake activities as well as protein content and Ca2+/calmodulin-dependent protein kinase (CaMK) phosphorylation of Ca2+-release channels by 25-60%. Global ischemia for 30 min produced marked depressions in SR Ca2+-release and -uptake activities as well as SR Ca2+-pump protein content in control hearts; these changes were significantly attenuated by preconditioning. Compared with the control preparations, preconditioning improved the recovery of cardiac function and SR Ca2+-release and -uptake activities as well as Ca2+-release channel and Ca2+-pump protein contents in the ischemic-reperfused hearts. Unlike the protein kinase A-mediated phosphorylation in SR membranes, the CaMK-mediated phosphorylations at Ca2+-release channels, Ca2+ pump, and phospholamban were depressed in the ischemic hearts; these changes were prevented by preconditioning. These results indicate that ischemic preconditioning may exert beneficial effects on ischemia-reperfusion-induced alterations in SR function by preventing changes in Ca2+-release channel and Ca2+-pump protein contents in the SR membrane.

UI MeSH Term Description Entries
D008297 Male Males
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

M Osada, and T Netticadan, and K Tamura, and N S Dhalla
January 2003, Experimental and clinical cardiology,
M Osada, and T Netticadan, and K Tamura, and N S Dhalla
March 2022, International journal of molecular sciences,
M Osada, and T Netticadan, and K Tamura, and N S Dhalla
November 1983, Cardiovascular research,
M Osada, and T Netticadan, and K Tamura, and N S Dhalla
February 2021, Canadian journal of physiology and pharmacology,
M Osada, and T Netticadan, and K Tamura, and N S Dhalla
February 1994, Circulation research,
M Osada, and T Netticadan, and K Tamura, and N S Dhalla
October 1992, Sheng li ke xue jin zhan [Progress in physiology],
M Osada, and T Netticadan, and K Tamura, and N S Dhalla
June 1995, Circulation research,
M Osada, and T Netticadan, and K Tamura, and N S Dhalla
September 1995, Journal of molecular and cellular cardiology,
M Osada, and T Netticadan, and K Tamura, and N S Dhalla
January 2015, International journal of clinical and experimental pathology,
M Osada, and T Netticadan, and K Tamura, and N S Dhalla
August 1996, Journal of molecular and cellular cardiology,
Copied contents to your clipboard!