Effect of lidocaine on left ventricular pressure-volume curves during demand ischemia in pigs. 1998

M Tayama, and S B Solomon, and S A Glantz
Cardiovascular Research Institute, Department of Medicine, University of California, San Francisco, California 94143-0124, USA.

The diastolic pressure-volume curve shifts upward during demand ischemia, most likely because of changes in Ca2+ dynamics within the sarcomere. It is possible that agents that affect Na+/Ca2+ exchange, such as lidocaine, a class 1b-type Na+-channel blocker that decreases intracellular Na+, could affect the diastolic pressure-volume relationship because of indirect effects on intracellular Ca2+. Lidocaine is a drug widely used to treat arrhythmias in patients with myocardial ischemia. We studied the effects of lidocaine on diastolic dysfunction associated with demand ischemia. We compared diastolic (as represented by the shift in the diastolic pressure-volume relationship) and systolic function during demand ischemia before and after lidocaine injection. We created demand ischemia in pigs before and after administering lidocaine (5 mg/kg) in eight open-pericardium anesthetized pigs. Demand ischemia was induced by constricting the left anterior descending coronary artery and then pacing at 1.5-1.8 times the baseline heart rate for 1.5-3 min. Hemodynamics were recorded during baseline, demand ischemia, baseline after lidocaine injection, and demand ischemia after lidocaine. Lidocaine did not affect systolic function or the time constant of isovolumic relaxation, but it increased the upward shift of the diastolic pressure-volume curve during demand ischemia compared with the increase that occurred before lidocaine was administered. This result suggests that lidocaine could aggravate diastolic dysfunction in patients with ischemic heart disease.

UI MeSH Term Description Entries
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002316 Cardiotonic Agents Agents that have a strengthening effect on the heart or that can increase cardiac output. They may be CARDIAC GLYCOSIDES; SYMPATHOMIMETICS; or other drugs. They are used after MYOCARDIAL INFARCT; CARDIAC SURGICAL PROCEDURES; in SHOCK; or in congestive heart failure (HEART FAILURE). Cardiac Stimulant,Cardiac Stimulants,Cardioprotective Agent,Cardioprotective Agents,Cardiotonic,Cardiotonic Agent,Cardiotonic Drug,Inotropic Agents, Positive Cardiac,Myocardial Stimulant,Myocardial Stimulants,Cardiotonic Drugs,Cardiotonics,Agent, Cardioprotective,Agent, Cardiotonic,Drug, Cardiotonic,Stimulant, Cardiac,Stimulant, Myocardial
D003971 Diastole Post-systolic relaxation of the HEART, especially the HEART VENTRICLES. Diastoles
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013318 Stroke Volume The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume. Ventricular Ejection Fraction,Ventricular End-Diastolic Volume,Ventricular End-Systolic Volume,Ejection Fraction, Ventricular,Ejection Fractions, Ventricular,End-Diastolic Volume, Ventricular,End-Diastolic Volumes, Ventricular,End-Systolic Volume, Ventricular,End-Systolic Volumes, Ventricular,Fraction, Ventricular Ejection,Fractions, Ventricular Ejection,Stroke Volumes,Ventricular Ejection Fractions,Ventricular End Diastolic Volume,Ventricular End Systolic Volume,Ventricular End-Diastolic Volumes,Ventricular End-Systolic Volumes,Volume, Stroke,Volume, Ventricular End-Diastolic,Volume, Ventricular End-Systolic,Volumes, Stroke,Volumes, Ventricular End-Diastolic,Volumes, Ventricular End-Systolic
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D013599 Systole Period of contraction of the HEART, especially of the HEART VENTRICLES. Systolic Time Interval,Interval, Systolic Time,Intervals, Systolic Time,Systoles,Systolic Time Intervals,Time Interval, Systolic,Time Intervals, Systolic
D017202 Myocardial Ischemia A disorder of cardiac function caused by insufficient blood flow to the muscle tissue of the heart. The decreased blood flow may be due to narrowing of the coronary arteries (CORONARY ARTERY DISEASE), to obstruction by a thrombus (CORONARY THROMBOSIS), or less commonly, to diffuse narrowing of arterioles and other small vessels within the heart. Severe interruption of the blood supply to the myocardial tissue may result in necrosis of cardiac muscle (MYOCARDIAL INFARCTION). Heart Disease, Ischemic,Ischemia, Myocardial,Ischemic Heart Disease,Disease, Ischemic Heart,Diseases, Ischemic Heart,Heart Diseases, Ischemic,Ischemias, Myocardial,Ischemic Heart Diseases,Myocardial Ischemias

Related Publications

M Tayama, and S B Solomon, and S A Glantz
October 1973, Circulation,
M Tayama, and S B Solomon, and S A Glantz
April 1994, The American journal of physiology,
M Tayama, and S B Solomon, and S A Glantz
December 1975, Circulation research,
M Tayama, and S B Solomon, and S A Glantz
June 1999, The American journal of physiology,
M Tayama, and S B Solomon, and S A Glantz
January 1973, Surgical forum,
M Tayama, and S B Solomon, and S A Glantz
March 1971, The American journal of physiology,
Copied contents to your clipboard!