Re-expression of RAG-1 and RAG-2 genes and evidence for secondary rearrangements in human germinal center B lymphocytes. 1998

C Giachino, and E Padovan, and A Lanzavecchia
Basel Institute for Immunology, Switzerland. cgiachino@fsm.it

V(D)J recombination occurs in immature B cells within primary lymphoid organs. However, recent evidence demonstrated that the recombination activating genes RAG-1 and RAG-2 can also be expressed in murine germinal centers (GC) where they can mediate secondary rearrangements. This finding raises a number of interesting questions, the most important of which is what is the physiological role, if any, of secondary immunoglobulin (Ig) gene rearrangements. In the present report, we provide evidence that human GC B cells that have lost surface immunoglobulin re-express RAG-1 and RAG-2, suggesting that they may be able to undergo Ig rearrangement. Furthermore, we describe two mature B cell clones in which secondary rearrangements have possibly occurred, resulting in light chain replacement. The two clones carry both kappa and lambda light chains productively rearranged, but fail to express the x chain on the cell surface due to a stop codon acquired by somatic mutation. Interestingly, the analysis of the extent of somatic mutations accumulated by the two light chains might suggest that the lambda chain could have been acquired through a secondary rearrangement. Taken together, these data suggest that secondary Ig gene rearrangements leading to replacement may occur in human GC and may contribute to the peripheral B cell repertoire.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005803 Genes, Immunoglobulin Genes encoding the different subunits of the IMMUNOGLOBULINS, for example the IMMUNOGLOBULIN LIGHT CHAIN GENES and the IMMUNOGLOBULIN HEAVY CHAIN GENES. The heavy and light immunoglobulin genes are present as gene segments in the germline cells. The completed genes are created when the segments are shuffled and assembled (B-LYMPHOCYTE GENE REARRANGEMENT) during B-LYMPHOCYTE maturation. The gene segments of the human light and heavy chain germline genes are symbolized V (variable), J (joining) and C (constant). The heavy chain germline genes have an additional segment D (diversity). Genes, Ig,Immunoglobulin Genes,Gene, Ig,Gene, Immunoglobulin,Ig Gene,Ig Genes,Immunoglobulin Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015321 Gene Rearrangement The ordered rearrangement of gene regions by DNA recombination such as that which occurs normally during development. DNA Rearrangement,DNA Rearrangements,Gene Rearrangements,Rearrangement, DNA,Rearrangement, Gene,Rearrangements, DNA,Rearrangements, Gene
D018398 Homeodomain Proteins Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL). Homeo Domain Protein,Homeobox Protein,Homeobox Proteins,Homeodomain Protein,Homeoprotein,Homeoproteins,Homeotic Protein,Homeo Domain Proteins,Homeotic Proteins,Domain Protein, Homeo,Protein, Homeo Domain,Protein, Homeobox,Protein, Homeodomain,Protein, Homeotic,Proteins, Homeo Domain,Proteins, Homeobox,Proteins, Homeodomain,Proteins, Homeotic
D018858 Germinal Center The activated center of a lymphoid follicle in secondary lymphoid tissue where B-LYMPHOCYTES are stimulated by antigens and helper T cells (T-LYMPHOCYTES, HELPER-INDUCER) are stimulated to generate memory cells. Center, Germinal,Centers, Germinal,Germinal Centers

Related Publications

C Giachino, and E Padovan, and A Lanzavecchia
December 2002, European journal of immunology,
C Giachino, and E Padovan, and A Lanzavecchia
November 1994, Leukemia & lymphoma,
C Giachino, and E Padovan, and A Lanzavecchia
March 1984, The American journal of pathology,
C Giachino, and E Padovan, and A Lanzavecchia
December 1992, Blood,
C Giachino, and E Padovan, and A Lanzavecchia
November 1997, The Journal of experimental medicine,
C Giachino, and E Padovan, and A Lanzavecchia
January 1997, Immunologic research,
C Giachino, and E Padovan, and A Lanzavecchia
December 1996, Science (New York, N.Y.),
C Giachino, and E Padovan, and A Lanzavecchia
December 1996, Science (New York, N.Y.),
Copied contents to your clipboard!