Characterization of membrane translocation by anthrax protective antigen. 1998

J Wesche, and J L Elliott, and P O Falnes, and S Olsnes, and R J Collier
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

Solving the crystallographic structure of the ring-shaped heptamer formed by protective antigen (PA), the B moiety of anthrax toxin, has focused attention on understanding how this oligomer mediates membrane translocation of the toxin's A moieties. We have developed an assay for translocation in which radiolabeled ligands are bound to proteolytically activated PA (PA63) at the surface of CHO or L6 cells, and translocation across the plasma membrane is induced by lowering the pH. The cells are then treated with Pronase E to degrade residual surface-bound material, and protected ligands are quantified after fractionation by SDS-PAGE. Translocation was most efficient (35%-50%) with LFN, the N-terminal PA binding domain of the anthrax lethal factor (LF). Intact LF, edema factor (EF), or fusion proteins containing LFN fused to certain heterologous proteins [the diphtheria toxin A chain (DTA) or dihydrofolate reductase (DHFR)] were less efficiently translocated (15%-20%); and LFN fusions to several other proteins were not translocated at all. LFN with different N-terminal residues was found to be degraded according to the N-end rule by the proteasome, and translocation of LFN fused to a mutant form of DHFR with a low affinity for methotrexate (MTX) protected cells from the effects of MTX. Both results are consistent with a cytosolic location of protected proteins. Evidence that a protein must unfold to be translocated was obtained in experiments showing that (i) translocation of LFNDTA was blocked by introduction of an artificial disulfide into the DTA moiety, and (ii) translocation of LFNDHFR and LFNDTA was blocked by their ligands (MTX and adenine, respectively). These results demonstrate that the acid-induced translocation by anthrax toxin closely resembles that of diphtheria toxin, despite the fact that these two toxins are unrelated and form pores by different mechanisms.

UI MeSH Term Description Entries
D008727 Methotrexate An antineoplastic antimetabolite with immunosuppressant properties. It is an inhibitor of TETRAHYDROFOLATE DEHYDROGENASE and prevents the formation of tetrahydrofolate, necessary for synthesis of thymidylate, an essential component of DNA. Amethopterin,Methotrexate Hydrate,Methotrexate Sodium,Methotrexate, (D)-Isomer,Methotrexate, (DL)-Isomer,Methotrexate, Dicesium Salt,Methotrexate, Disodium Salt,Methotrexate, Sodium Salt,Mexate,Dicesium Salt Methotrexate,Hydrate, Methotrexate,Sodium, Methotrexate
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011402 Pronase A proteolytic enzyme obtained from Streptomyces griseus. Pronase E,Pronase P,Protease XIV,XIV, Protease
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial

Related Publications

J Wesche, and J L Elliott, and P O Falnes, and S Olsnes, and R J Collier
March 2011, Cellular microbiology,
J Wesche, and J L Elliott, and P O Falnes, and S Olsnes, and R J Collier
August 1999, Journal of applied microbiology,
J Wesche, and J L Elliott, and P O Falnes, and S Olsnes, and R J Collier
July 2005, Molecular and cellular biology,
J Wesche, and J L Elliott, and P O Falnes, and S Olsnes, and R J Collier
March 2001, The Journal of biological chemistry,
J Wesche, and J L Elliott, and P O Falnes, and S Olsnes, and R J Collier
December 2009, Molecular aspects of medicine,
J Wesche, and J L Elliott, and P O Falnes, and S Olsnes, and R J Collier
May 2015, Nature,
J Wesche, and J L Elliott, and P O Falnes, and S Olsnes, and R J Collier
December 2012, The Journal of biological chemistry,
J Wesche, and J L Elliott, and P O Falnes, and S Olsnes, and R J Collier
January 2003, Molecular medicine (Cambridge, Mass.),
J Wesche, and J L Elliott, and P O Falnes, and S Olsnes, and R J Collier
September 2004, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
J Wesche, and J L Elliott, and P O Falnes, and S Olsnes, and R J Collier
November 1993, Molecular microbiology,
Copied contents to your clipboard!