Antiapoptotic signaling by the insulin receptor in Chinese hamster ovary cells. 1998

W Lee-Kwon, and D Park, and P V Baskar, and S Kole, and M Bernier
Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland 21224, USA.

We have sought to determine whether insulin can promote cell survival and protect Chinese hamster ovary (CHO) cells from apoptosis induced by serum starvation. Low concentrations of insulin were antiapoptotic for cells overexpressing wild-type insulin receptors but not in cells transfected with kinase-defective insulin receptor mutants that lacked a functional ATP binding site. However, treatment with orthovanadate (50 microM), a widely used tyrosine phosphatase inhibitor, led a dramatic reduction in internucleosomal DNA fragmentation in both cell lines. Cells transfected with truncated receptor mutants in either the juxtamembrane or C-terminal domain were as responsive as cells overexpressing wild-type receptors in mediating insulin antiapoptotic protection. The mechanisms underlying insulin antiapoptotic protection were investigated using a variety of pharmacological tools known to inhibit distinct signaling pathways. The phosphatidylinositol-3' kinase inhibitors wortmannin and LY294002 had only a modest influence whereas blocking protein farnesylation with manumycin severely disrupted the antiapoptotic capacity of the insulin receptor. Of interest, cells gained antiapoptotic potential following inhibition of extracellular signal-regulated kinase activation with the pharmacological agent PD98059. Insulin induced MKK3/MKK6 phosphorylation and activation of p38 MAP kinase whose activity was inhibited with SB203580. However, the inhibition of p38 MAP kinase had no effect on the protection offered by insulin. We conclude that the antiapoptotic function of the insulin receptor requires intact receptor kinase activity and implicates a farnesylation-dependent pathway. Increase in cellular phosphotyrosine content, however, triggers antiapoptotic signal that may converge downstream of the insulin receptor.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000081082 Phosphoinositide-3 Kinase Inhibitors Agents that inhibit PHOSPHOINOSITIDE-3 KINASE activity. Phosphoinositide-3 Kinase Inhibitor,Inhibitor, Phosphoinositide-3 Kinase,Inhibitors, Phosphoinositide-3 Kinase,Kinase Inhibitor, Phosphoinositide-3,Kinase Inhibitors, Phosphoinositide-3,Phosphoinositide 3 Kinase Inhibitor,Phosphoinositide 3 Kinase Inhibitors
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017368 Protein Prenylation A post-translational modification of proteins by the attachment of an isoprenoid to the C-terminal cysteine residue. The isoprenoids used, farnesyl diphosphate or geranylgeranyl diphosphate, are derived from the same biochemical pathway that produces cholesterol. Post-Translational Isoprenylation,Protein Isoprenylation,Protein Farnesylation,Protein Geranylgeranylation,Protein Polyisoprenylation,Farnesylation, Protein,Geranylgeranylation, Protein,Polyisoprenylation, Protein,Prenylation, Protein

Related Publications

W Lee-Kwon, and D Park, and P V Baskar, and S Kole, and M Bernier
August 1987, Proceedings of the National Academy of Sciences of the United States of America,
W Lee-Kwon, and D Park, and P V Baskar, and S Kole, and M Bernier
April 2000, Journal of cellular biochemistry,
W Lee-Kwon, and D Park, and P V Baskar, and S Kole, and M Bernier
April 1994, The Journal of biological chemistry,
W Lee-Kwon, and D Park, and P V Baskar, and S Kole, and M Bernier
February 1989, Biochemical and biophysical research communications,
W Lee-Kwon, and D Park, and P V Baskar, and S Kole, and M Bernier
August 1993, The Journal of biological chemistry,
W Lee-Kwon, and D Park, and P V Baskar, and S Kole, and M Bernier
January 1987, Methods in enzymology,
W Lee-Kwon, and D Park, and P V Baskar, and S Kole, and M Bernier
June 1991, The Journal of biological chemistry,
W Lee-Kwon, and D Park, and P V Baskar, and S Kole, and M Bernier
December 2004, Endocrinology,
W Lee-Kwon, and D Park, and P V Baskar, and S Kole, and M Bernier
June 2001, Journal of neurochemistry,
W Lee-Kwon, and D Park, and P V Baskar, and S Kole, and M Bernier
February 1996, European journal of biochemistry,
Copied contents to your clipboard!