Human skeletal muscle pyruvate dehydrogenase kinase activity increases after a low-carbohydrate diet. 1998

S J Peters, and T A St Amand, and R A Howlett, and G J Heigenhauser, and L L Spriet
Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1; and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.

To characterize human skeletal muscle enzymatic adaptation to a low-carbohydrate, high-fat, and high-protein diet (LCD), subjects consumed a eucaloric diet consisting of 5% of the total energy intake from carbohydrate, 63% from fat, and 33% from protein for 6 days compared with their normal diet (52% carbohydrate, 33% fat, and 14% protein). Biopsies were taken from the vastus lateralis before and after 3 and 6 days on a LCD. Intact mitochondria were extracted from fresh muscle and analyzed for pyruvate dehydrogenase (PDH) kinase, total PDH, and carnitine palmitoyltransferase I activities and mitochondrial ATP production rate (using carbohydrate and fat substrates). beta-Hydroxyacyl CoA dehydrogenase, active PDH (PDHa), and citrate synthase activities were also measured on whole muscle homogenates. PDH kinase (PDHK) was calculated as the absolute value of the apparent first-order rate constant of the inactivation of PDH in the presence of 0.3 mM Mg2+-ATP. PDHK increased dramatically from 0.10 +/- 0.02 min-1 to 0.35 +/- 0.09 min-1 at 3 days and 0.49 +/- 0. 06 min-1 after 6 days. Resting PDHa activity decreased from 0.63 +/- 0.17 to 0.17 +/- 0.04 mmol. min-1. kg-1 after 6 days on the diet, whereas total PDH activity did not change. Activities for all other enzymes were unaltered by the LCD. In summary, severe deficiency of dietary carbohydrate combined with a twofold increase in dietary fat and protein caused a rapid three- to fivefold increase in PDHK activity in human skeletal muscle. The increased PDHK activity downregulated the amount of PDH in its active form at rest and decreased carbohydrate metabolism. However, an increase in the activities of enzymes involved in fatty acid oxidation did not occur.

UI MeSH Term Description Entries
D008297 Male Males
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D002334 Carnitine O-Palmitoyltransferase An enzyme that catalyzes reversibly the conversion of palmitoyl-CoA to palmitoylcarnitine in the inner mitochondrial membrane. EC 2.3.1.21. Carnitine Palmitoyltransferase,CPT II,Carnitine Acyltransferase I,Carnitine Palmitoyltransferase I,Carnitine Palmitoyltransferase II,Palmitoylcarnitine Transferase,Palmitylcarnitine Acyltransferase,Acyltransferase I, Carnitine,Acyltransferase, Palmitylcarnitine,Carnitine O Palmitoyltransferase,II, Carnitine Palmitoyltransferase,O-Palmitoyltransferase, Carnitine,Palmitoyltransferase I, Carnitine,Palmitoyltransferase II, Carnitine,Palmitoyltransferase, Carnitine,Transferase, Palmitoylcarnitine
D002950 Citrate (si)-Synthase Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. Citrate Synthase,Synthase, Citrate
D004040 Dietary Carbohydrates Carbohydrates present in food comprising digestible sugars and starches and indigestible cellulose and other dietary fibers. The former are the major source of energy. The sugars are in beet and cane sugar, fruits, honey, sweet corn, corn syrup, milk and milk products, etc.; the starches are in cereal grains, legumes (FABACEAE), tubers, etc. (From Claudio & Lagua, Nutrition and Diet Therapy Dictionary, 3d ed, p32, p277) Carbohydrates, Dietary,Carbohydrate, Dietary,Dietary Carbohydrate
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000081382 Pyruvate Dehydrogenase Acetyl-Transferring Kinase A pyruvate dehydrogenase kinase isozyme located in the mitochondria which converts PYRUVATE to ACETYL CoA in the CITRIC ACID CYCLE, phosphorylates SERINE residues on pyruvate dehydrogenase using ATP, and plays a key role in the regulation of GLUCOSE and fatty acid metabolism. PDH Kinase,Pyruvate Dehydrogenase (Acetyl-Transferring) Kinase,Pyruvate Dehydrogenase (Lipoamide) Kinase,Pyruvate Dehydrogenase Kinase,Dehydrogenase Kinase, Pyruvate,Kinase, PDH,Kinase, Pyruvate Dehydrogenase,Pyruvate Dehydrogenase Acetyl Transferring Kinase

Related Publications

S J Peters, and T A St Amand, and R A Howlett, and G J Heigenhauser, and L L Spriet
August 1999, Molecular and cellular biochemistry,
S J Peters, and T A St Amand, and R A Howlett, and G J Heigenhauser, and L L Spriet
January 2003, Vascular and endovascular surgery,
S J Peters, and T A St Amand, and R A Howlett, and G J Heigenhauser, and L L Spriet
June 2004, The Journal of physiology,
S J Peters, and T A St Amand, and R A Howlett, and G J Heigenhauser, and L L Spriet
October 2004, Journal of applied physiology (Bethesda, Md. : 1985),
S J Peters, and T A St Amand, and R A Howlett, and G J Heigenhauser, and L L Spriet
December 2001, American journal of physiology. Endocrinology and metabolism,
S J Peters, and T A St Amand, and R A Howlett, and G J Heigenhauser, and L L Spriet
June 2012, Nutrition & metabolism,
S J Peters, and T A St Amand, and R A Howlett, and G J Heigenhauser, and L L Spriet
January 2007, The Journal of clinical endocrinology and metabolism,
S J Peters, and T A St Amand, and R A Howlett, and G J Heigenhauser, and L L Spriet
January 1983, Neurology,
S J Peters, and T A St Amand, and R A Howlett, and G J Heigenhauser, and L L Spriet
March 1975, Molecular and cellular biochemistry,
S J Peters, and T A St Amand, and R A Howlett, and G J Heigenhauser, and L L Spriet
June 2004, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!