Pancreastatin inhibits insulin action in rat adipocytes. 1998

V Sánchez-Margalet, and C González-Yanes
Department of Medical Biochemistry and Molecular Biology, School of Medicine, Investigation Unit of the University Hospital Virgen Macarena, Seville 41009, Spain.

Pancreastatin (PST), a regulatory peptide with a general inhibitory effect on secretion, is derived from chromogranin A, a glycoprotein present throughout the neuroendocrine system. We have previously demonstrated the counterregulatory role of PST on insulin action in rat hepatocytes. Here, we are reporting the PST effects on rat adipocytes. PST dose dependently inhibits basal and insulin-stimulated glucose transport, lactate production, and lipogenesis, impairing the main metabolic actions of insulin in adipocytes. These effects were observed in a wide range of insulin concentrations, leading to a shift to the right in the dose-response curve. Maximal effect was observed at 10 nM PST, and the IC50 value was approximately 1 nM. Moreover, PST has a lipolytic effect in rat adipocytes (ED50 0.1 nM), although it was completely inhibited by insulin. In contrast, PST dose dependently stimulated protein synthesis and enhanced insulin-stimulated protein synthesis. In summary, these data show the lipokinetic effect of PST and the inhibitory effect of PST on insulin metabolic action within a range of physiological concentrations. Therefore, these results give new pathophysiological basis for the association of PST with insulin resistance.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007329 Insulin Antagonists Compounds which inhibit or antagonize the biosynthesis or action of insulin. Antagonists, Insulin
D008297 Male Males
D010187 Pancreatic Hormones Peptide hormones secreted into the blood by cells in the ISLETS OF LANGERHANS of the pancreas. The alpha cells secrete glucagon; the beta cells secrete insulin; the delta cells secrete somatostatin; and the PP cells secrete pancreatic polypeptide. Hormones, Pancreatic
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

V Sánchez-Margalet, and C González-Yanes
March 1992, Diabetes research (Edinburgh, Scotland),
V Sánchez-Margalet, and C González-Yanes
June 1991, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
V Sánchez-Margalet, and C González-Yanes
May 1994, Regulatory peptides,
V Sánchez-Margalet, and C González-Yanes
December 1997, The Journal of endocrinology,
V Sánchez-Margalet, and C González-Yanes
December 1990, Endocrinology,
V Sánchez-Margalet, and C González-Yanes
February 1991, Biochemistry,
V Sánchez-Margalet, and C González-Yanes
March 1992, Diabetes research and clinical practice,
V Sánchez-Margalet, and C González-Yanes
January 1986, Nature,
V Sánchez-Margalet, and C González-Yanes
March 1988, Diabetes,
V Sánchez-Margalet, and C González-Yanes
August 1985, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!