High dietary salt alters arteriolar myogenic responsiveness in normotensive and hypertensive rats. 1998

T R Nurkiewicz, and M A Boegehold
Department of Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA.

We evaluated arteriolar myogenic responsiveness in normotensive, salt-loaded and hypertensive rats and investigated the potential influence of luminal blood flow or shear stress on myogenic responses under each of these conditions. Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) fed low-salt (0.45%, LS) or high-salt (7%, HS) diets were enclosed in a ventilated airtight box with the spinotrapezius muscle exteriorized for intravital microscopy. Dietary salt did not affect mean arterial pressure (MAP) in WKY, whereas MAP in SHR was significantly higher and augmented by dietary salt. In all groups, box pressurization caused similar increases in MAP that were completely transmitted to the arterioles. After these pressure increases, large arteriole diameters decreased by 0-30% and intermediate arteriole diameters decreased by 21-27%. Arteriolar myogenic responsiveness was not different between WKY-LS and SHR-LS. Large arterioles in WKY-HS displayed an attenuated pressure-diameter relationship compared with that in WKY-LS. Large arterioles in SHR-HS displayed an augmented pressure-diameter relationship compared with that in SHR-LS. There were no correlations between resting flow or wall shear rate and the magnitude of initial myogenic constriction in any group or vessel type. The capacity for sustained myogenic constriction was unrelated to secondary decreases in flow (14-41%) or increases in wall shear rate (21-88%) in each group. We conclude that 1) dietary salt impairs the myogenic responsiveness of large arterioles in normotensive rats and augments the myogenic responsiveness of large arterioles in hypertensive rats, 2) hypertension does not alter arteriolar myogenic responsiveness in this vascular bed, and 3) flow- or shear-dependent mechanisms do not attenuate myogenic responses in the intact arteriolar network of normal, salt-loaded, or hypertensive rats.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004039 Diet, Sodium-Restricted A diet which contains very little sodium chloride. It is prescribed by some for hypertension and for edematous states. (Dorland, 27th ed) Diet, Low-Salt,Diet, Low-Sodium,Diet, Salt-Free,Diet, Low Salt,Diet, Low Sodium,Diet, Salt Free,Diet, Sodium Restricted,Diets, Low-Salt,Diets, Low-Sodium,Diets, Salt-Free,Diets, Sodium-Restricted,Low-Salt Diet,Low-Salt Diets,Low-Sodium Diet,Low-Sodium Diets,Salt-Free Diet,Salt-Free Diets,Sodium-Restricted Diet,Sodium-Restricted Diets
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic

Related Publications

T R Nurkiewicz, and M A Boegehold
June 1993, The American journal of physiology,
T R Nurkiewicz, and M A Boegehold
October 1995, The American journal of physiology,
T R Nurkiewicz, and M A Boegehold
February 1966, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
T R Nurkiewicz, and M A Boegehold
June 1994, Hypertension (Dallas, Tex. : 1979),
T R Nurkiewicz, and M A Boegehold
March 2007, American journal of physiology. Heart and circulatory physiology,
T R Nurkiewicz, and M A Boegehold
January 1991, Advances in experimental medicine and biology,
T R Nurkiewicz, and M A Boegehold
November 2002, Clinical and experimental pharmacology & physiology,
T R Nurkiewicz, and M A Boegehold
November 1985, The American journal of physiology,
T R Nurkiewicz, and M A Boegehold
January 1985, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!