Attachment to the nuclear matrix mediates specific alterations in chromatin structure. 1998

A Pemov, and S Bavykin, and J L Hamlin
Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.

The DNA in eukaryotic chromosomes is organized into a series of loops that are permanently attached at their bases to the nuclear scaffold or matrix at sequences known as scaffold-attachment or matrix-attachment regions. At present, it is not clear what effect affixation to the nuclear matrix has on chromatin architecture in important regulatory regions such as origins of replication or the promoter regions of genes. In the present study, we have investigated cell-cycle-dependent changes in the chromatin structure of a well characterized replication initiation zone in the amplified dihydrofolate reductase domain of the methotrexate-resistant Chinese hamster ovary cell line CHOC 400. Replication can initiate at any of multiple potential sites scattered throughout the 55-kilobase intergenic region in this domain, with two subregions (termed ori-beta and ori-gamma) being somewhat preferred. We show here that the chromatin in the ori-beta and ori-gamma regions undergoes dramatic alterations in micrococcal nuclease hypersensitivity as cells cross the G1/S boundary, but only in those copies of the amplicon that are affixed to the nuclear matrix. In contrast, the fine structure of chromatin in the promoter of the dihydrofolate reductase gene does not change detectably as a function of matrix attachment or cell-cycle position. We suggest that attachment of DNA to the nuclear matrix plays an important role in modulating chromatin architecture, and this could facilitate the activity of origins of replication.

UI MeSH Term Description Entries
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015530 Nuclear Matrix The residual framework structure of the CELL NUCLEUS that maintains many of the overall architectural features of the cell nucleus including the nuclear lamina with NUCLEAR PORE complex structures, residual CELL NUCLEOLI and an extensive fibrogranular structure in the nuclear interior. (Advan. Enzyme Regul. 2002; 42:39-52) Nuclear Scaffold,Nucleoskeleton,Matrices, Nuclear,Matrix, Nuclear,Nuclear Matrices,Nuclear Scaffolds,Nucleoskeletons,Scaffold, Nuclear,Scaffolds, Nuclear
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO

Related Publications

A Pemov, and S Bavykin, and J L Hamlin
February 2024, Nature communications,
A Pemov, and S Bavykin, and J L Hamlin
April 1997, Nucleic acids research,
A Pemov, and S Bavykin, and J L Hamlin
June 1984, Biochimica et biophysica acta,
A Pemov, and S Bavykin, and J L Hamlin
January 1997, Nature,
A Pemov, and S Bavykin, and J L Hamlin
August 1996, Journal of cellular biochemistry,
A Pemov, and S Bavykin, and J L Hamlin
January 1982, Doklady Akademii nauk SSSR,
A Pemov, and S Bavykin, and J L Hamlin
April 1987, Journal of virology,
A Pemov, and S Bavykin, and J L Hamlin
January 1991, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!