Radiation-induced changes in bone perfusion and angiogenesis. 1998

P Okunieff, and X Wang, and P Rubin, and J N Finkelstein, and L S Constine, and I Ding
Department of Radiation Oncology, Strong Memorial Hospital, Rochester, NY 14642, USA. okunieff@radonc.medinfo.rochester.edu

OBJECTIVE To determine whether blood flow of bone is altered by limb irradiation and whether bFGF, an angiogenic cytokine, might alleviate any flow or growth abnormality resulting from 30 Gy single fraction irradiation. METHODS C3H mice received whole right hind limb radiation at doses of 0 to 30 Gy. Additional groups received 30 Gy, and then beginning 1 or 5 weeks later received intravenous bFGF at a dose of 6 microg/mouse, twice a week for 4 weeks. Serial X-ray films were taken to measure the tibias. At 33 weeks, laser Doppler flow (LDF) measurements were made of both limbs. Cytokine measurements were made using ELISA and RNase protection. RESULTS Bone growth was reduced following radiation in a dose dependent manner. bFGF improved bone growth after radiation even when begun 5 weeks after radiation, however, we detected no significant improvement in LDF of the irradiated bone or periosteum. Muscle tissue surrounding bone of the irradiated leg showed no increase in isoforms of TGFbeta, TNF, or IFN. There was also no difference in the circulating plasma TGFbeta1 in irradiated mice. In contrast, LDF increased significantly as a function of radiation dose in the nonirradiated tibia. Systemic delivery of bFGF appears to further enhance the increase in flow seen in the nonirradiated limb. CONCLUSIONS Radiation induces a chronic antiangiogenic effect contributing to reduced limb growth. At 33 weeks the antiangiogenesis was not associated with local soft tissue elevations of TNF, IFN, or TGFbeta. Radiation toxicity to bone is alleviated by bFGF therapy suggesting that powerful locally-acting antiangiogenic mechanisms are involved. We postulate that the increased LDF of the contralateral tibia is due to circulating angiogenesis factors that are elevated to compensate for the radiation-induced antiangiogenesis.

UI MeSH Term Description Entries
D008233 Lymphotoxin-alpha A tumor necrosis factor family member that is released by activated LYMPHOCYTES. Soluble lymphotoxin is specific for TUMOR NECROSIS FACTOR RECEPTOR TYPE I; TUMOR NECROSIS FACTOR RECEPTOR TYPE II; and TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 14. Lymphotoxin-alpha can form a membrane-bound heterodimer with LYMPHOTOXIN-BETA that has specificity for the LYMPHOTOXIN BETA RECEPTOR. TNF Superfamily, Member 1,TNF-beta,Tumor Necrosis Factor Ligand Superfamily Member 1,Tumor Necrosis Factor-beta,Lymphotoxin,Lymphotoxin-alpha3,Soluble Lymphotoxin-alpha,alpha-Lymphotoxin,Lymphotoxin alpha,Lymphotoxin alpha3,Lymphotoxin-alpha, Soluble,Soluble Lymphotoxin alpha,Tumor Necrosis Factor beta,alpha Lymphotoxin
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D001846 Bone Development The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS. Bone Growth
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk

Related Publications

P Okunieff, and X Wang, and P Rubin, and J N Finkelstein, and L S Constine, and I Ding
August 1974, Radiology,
P Okunieff, and X Wang, and P Rubin, and J N Finkelstein, and L S Constine, and I Ding
January 1998, Radiographics : a review publication of the Radiological Society of North America, Inc,
P Okunieff, and X Wang, and P Rubin, and J N Finkelstein, and L S Constine, and I Ding
September 2018, Acta ophthalmologica,
P Okunieff, and X Wang, and P Rubin, and J N Finkelstein, and L S Constine, and I Ding
June 2020, Bone reports,
P Okunieff, and X Wang, and P Rubin, and J N Finkelstein, and L S Constine, and I Ding
December 1967, Annals of the New York Academy of Sciences,
P Okunieff, and X Wang, and P Rubin, and J N Finkelstein, and L S Constine, and I Ding
January 1994, Seminars in roentgenology,
P Okunieff, and X Wang, and P Rubin, and J N Finkelstein, and L S Constine, and I Ding
April 2013, Plastic and reconstructive surgery,
P Okunieff, and X Wang, and P Rubin, and J N Finkelstein, and L S Constine, and I Ding
August 2008, Bone,
P Okunieff, and X Wang, and P Rubin, and J N Finkelstein, and L S Constine, and I Ding
December 2012, Medical physics,
P Okunieff, and X Wang, and P Rubin, and J N Finkelstein, and L S Constine, and I Ding
August 2020, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Copied contents to your clipboard!