Functional response of the rat kidney to inhibition of nitric oxide synthesis: role of cytochrome p450-derived arachidonate metabolites. 1998

A O Oyekan, and J C McGiff
Department of Pharmacology, New York Medical College, Valhalla 10595, USA.

1. We tested the hypothesis that nitric oxide (NO) exerts a tonic inhibitory influence on cytochrome P450 (CYP450)-dependent metabolism of arachidonic acid (AA). 2. N(omega)-nitro-L-Arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), increased mean blood pressure (MBP), from 91+/-6 to 137+/-5 mmHg, renal vascular resistance (RVR), from 9.9+/-0.6 to 27.4+/-2.5 mmHg ml(-1) min(-1), and reduced renal blood flow (RBF), from 9.8+/-0.7 to 6.5+/-0.6 ml min(-1)) and GFR from 1.2+/-0.2 to 0.6+/-0.2 ml 100 g(-1) min(-1)) accompanied by diuresis (UV, 1.7+/-0.3 to 4.3+/-0.8 microl 100 g(-1) min (-1)), and natriuresis (U(Na)V, 0.36+/-0.04 to 1.25+/-0.032 micromol 100 g(-1) min(-1)). 3. 12, 12 dibromododec-enoic acid (DBDD), an inhibitor of omega hydroxylase, blunted L-NAME-induced changes in MBP, RVR, UV and U(Na)V by 63+/-8, 70+/-5, 45+/-8 and 42+/-9%, respectively, and fully reversed the reduction in GFR by L-NAME. Clotrimazole, an inhibitor of the epoxygenase pathway of CYP450-dependent AA metabolism, was without effect. 4. BMS182874 (5-dimethylamino)-N-(3,4-dimethyl-5-isoxazolyl)-1-naphthalenesulfo namide), an endothelin (ET)A receptor antagonist, also blunted the increases in MBP and RVR and the diuresis/natriuresis elicited by L-NAME without affecting GFR. 5. Indomethacin blunted L-NAME-induced increases in RVR, UV and U(Na)V. BMS180291 (1S-(1alpha,2alpha,3alpha,4alpha)]-2-[[3-[4-[(++ +pentylamino)carbonyl]-2-oxazolyl]-7-oxabicyclo[2.2.1]hept-2-yl ]methyl]benzenepropanoic acid), an endoperoxide receptor antagonist, attenuated the pressor and renal haemodynamic but not the renal tubular effects of L-NAME. 6. In conclusion, the renal functional effects of the CYP450-derived mediator(s) expressed after inhibition of NOS with L-NAME were prevented by inhibiting either CYP450 omega hydroxylase or cyclooxygenase or by antagonizing either ET(A) or endoperoxide receptors. 20-hydroxyeicosatetraenoic acid (20-HETE) fulfils the salient properties of this mediator.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011982 Receptors, Prostaglandin Cell surface receptors that bind prostaglandins with high affinity and trigger intracellular changes which influence the behavior of cells. Prostaglandin receptor subtypes have been tentatively named according to their relative affinities for the endogenous prostaglandins. They include those which prefer prostaglandin D2 (DP receptors), prostaglandin E2 (EP1, EP2, and EP3 receptors), prostaglandin F2-alpha (FP receptors), and prostacyclin (IP receptors). Prostaglandin Receptors,Prostaglandin Receptor,Receptor, Prostaglandin,Receptors, Prostaglandins,Prostaglandins Receptors
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006893 Hydroxyeicosatetraenoic Acids Eicosatetraenoic acids substituted in any position by one or more hydroxy groups. They are important intermediates in a series of biosynthetic processes leading from arachidonic acid to a number of biologically active compounds such as prostaglandins, thromboxanes, and leukotrienes. HETE,Acids, Hydroxyeicosatetraenoic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic

Related Publications

A O Oyekan, and J C McGiff
March 1991, Seminars in nephrology,
A O Oyekan, and J C McGiff
July 1998, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
A O Oyekan, and J C McGiff
January 1992, The Journal of pharmacology and experimental therapeutics,
A O Oyekan, and J C McGiff
January 1989, Advances in prostaglandin, thromboxane, and leukotriene research,
A O Oyekan, and J C McGiff
January 1996, Advances in experimental medicine and biology,
A O Oyekan, and J C McGiff
December 1997, The Journal of pharmacology and experimental therapeutics,
A O Oyekan, and J C McGiff
December 2006, Nitric oxide : biology and chemistry,
Copied contents to your clipboard!