The Bowman-Birk inhibitor from soybeans as an anticarcinogenic agent. 1998

A R Kennedy
University of Pennsylvania School of Medicine, Philadelphia, USA. akennedy@mail.med.upenn.edu

Certain protease inhibitors are effective at preventing or suppressing carcinogen-induced transformation in vitro and carcinogenesis in animal model systems. One protease inhibitor, the soybean-derived Bowman-Birk inhibitor (BBI) is particularly effective in suppressing carcinogenesis. BBI is a protein of a molecular weight of 8000 with a well-characterized ability to inhibit trypsin and chymotrypsin. BBI has been extensively studied, both as purified BBI and as an extract of soybeans enriched in BBI called BBI concentrate (BBIC). Purified BBI and BBIC have comparable suppressive effects on the carcinogenic process in a variety of in vivo and in vitro systems. BBI appears to be a universal cancer preventive agent. Purified BBI and BBIC suppress carcinogenesis as follows: in 3 different species (mice, rats, and hamsters); in several organ systems and tissue types [eg, colon, liver, lung, esophagus, cheek pouch (oral epithelium), and cells of hematopoietic origin]; and in cells of epithelial and connective tissue origin when given to animals by several different routes of administration, including the diet, leading to different types of cancer (eg, squamous cell carcinomas, adenocarcinomas, and angiosarcomas), and induced by various chemical and physical carcinogens. About half of an oral dose of BBI is taken up into the bloodstream and distributed throughout the body, with excretion via the urine. Pharmacokinetic studies of BBI have been performed in animals with radioactively labeled BBI, whereas antibodies that react with reduced BBI are being used in pharmacokinetic studies in humans. The calculated serum half-life is 10 h in both rats and hamsters. BBIC achieved Investigational New Drug status from the FDA in April 1992 (IND no. 34671; sponsor, Ann R Kennedy), and studies to evaluate BBIC as an anticarcinogenic agent in human populations began. Both BBI and BBIC prevent and suppress malignant transformation in vitro and carcinogenesis in vivo without toxicity.

UI MeSH Term Description Entries
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001682 Biological Availability The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action. Availability Equivalency,Bioavailability,Physiologic Availability,Availability, Biologic,Availability, Biological,Availability, Physiologic,Biologic Availability,Availabilities, Biologic,Availabilities, Biological,Availabilities, Physiologic,Availability Equivalencies,Bioavailabilities,Biologic Availabilities,Biological Availabilities,Equivalencies, Availability,Equivalency, Availability,Physiologic Availabilities
D014358 Trypsin Inhibitor, Bowman-Birk Soybean A low-molecular-weight protein (minimum molecular weight 8000) which has the ability to inhibit trypsin as well as chymotrypsin at independent binding sites. It is characterized by a high cystine content and the absence of glycine. Bowman-Birk Soybean Trypsin Inhibitor,Trypsin Inhibitor, Bowman Birk Soybean,Bowman Birk Soybean Trypsin Inhibitor
D014361 Trypsin Inhibitors Serine proteinase inhibitors which inhibit trypsin. They may be endogenous or exogenous compounds. Trypsin Inhibitor,Inhibitor, Trypsin,Inhibitors, Trypsin
D016588 Anticarcinogenic Agents Agents that reduce the frequency or rate of spontaneous or induced tumors independently of the mechanism involved. Anti-Carcinogenic Agents,Anti-Carcinogenic Drugs,Anti-Carcinogenic Effect,Anti-Carcinogenic Effects,Anticarcinogenic Drugs,Anticarcinogenic Effect,Anticarcinogenic Effects,Anticarcinogens,Agents, Anti-Carcinogenic,Agents, Anticarcinogenic,Anti Carcinogenic Agents,Anti Carcinogenic Drugs,Anti Carcinogenic Effect,Anti Carcinogenic Effects,Drugs, Anti-Carcinogenic,Drugs, Anticarcinogenic,Effect, Anti-Carcinogenic,Effect, Anticarcinogenic,Effects, Anti-Carcinogenic,Effects, Anticarcinogenic

Related Publications

A R Kennedy
February 1985, International journal of peptide and protein research,
A R Kennedy
March 2008, Journal of peptide science : an official publication of the European Peptide Society,
A R Kennedy
April 1992, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!