Evaluation of a diphenylphosphorylazide-crosslinked collagen membrane for guided bone regeneration in mandibular defects in rats. 1998

S Zahedi, and R Legrand, and G Brunel, and A Albert, and W Dewé, and B Coumans, and J P Bernard
Department of Periodontology and Implantology, School of Dentistry, Sart Tilman University Hospital, University of Liège, Belgium. shahram.zahedi@skynet.be

In the present study, the potential of a diphenylphosphorylazide-crosslinked type I bovine collagen membrane was evaluated in the healing of mandibular bone defects applying the biological concept of guided bone regeneration. The experiment was carried out on 25 Wistar rats. After exposing the mandibular ramus bilaterally, 5 mm diameter full-thickness circular bone defects were surgically created. While the defect on one side was covered by the membrane (experimental), the defect on the other side was left uncovered (control) before closure of the overlying soft tissues. The rats were sacrificed in groups of 5 after 7, 15, 30, 90, and 180 days of healing. Although at early stages of healing similar amounts of bone formation were observed in the experimental and control defects, after 1 month of healing, most of the experimental defects were completely closed with new bone, while in the control defects, only limited amounts of new bone were observed at the rims and in the lingual aspect of the lesions. In the 90- and 180-day animals, all experimental defects were completely closed, while in the control defects, no statistically significant increase in bone regeneration was observed. The increase in percentage of bone regeneration in the experimental defects was statistically significant between the 15-day specimens as compared with the 7-day specimens (P < 0.01) and likewise between 30-day and 15-day specimens (P < 0.001). It can be concluded that a DPPA-crosslinked collagen membrane yields biocompatibility, ad hoc mechanical hindrance, and handling characteristics suitable for guided bone regeneration applications in this experimental model.

UI MeSH Term Description Entries
D008334 Mandible The largest and strongest bone of the FACE constituting the lower jaw. It supports the lower teeth. Mylohyoid Groove,Mylohyoid Ridge,Groove, Mylohyoid,Grooves, Mylohyoid,Mandibles,Mylohyoid Grooves,Mylohyoid Ridges,Ridge, Mylohyoid,Ridges, Mylohyoid
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D001861 Bone Regeneration Renewal or repair of lost bone tissue. It excludes BONY CALLUS formed after BONE FRACTURES but not yet replaced by hard bone. Osteoconduction,Bone Regenerations,Regeneration, Bone,Regenerations, Bone
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001386 Azides Organic or inorganic compounds that contain the -N3 group. Azide
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible
D016301 Alveolar Bone Loss Resorption or wasting of the tooth-supporting bone (ALVEOLAR PROCESS) in the MAXILLA or MANDIBLE. Alveolar Resorption,Bone Loss, Alveolar,Bone Loss, Periodontal,Periodontal Bone Loss,Periodontal Resorption,Alveolar Bone Atrophy,Alveolar Process Atrophy,Alveolar Bone Atrophies,Alveolar Bone Losses,Alveolar Process Atrophies,Alveolar Resorptions,Bone Atrophies, Alveolar,Bone Atrophy, Alveolar,Bone Losses, Periodontal,Periodontal Bone Losses,Periodontal Resorptions,Resorption, Alveolar,Resorption, Periodontal,Resorptions, Alveolar

Related Publications

S Zahedi, and R Legrand, and G Brunel, and A Albert, and W Dewé, and B Coumans, and J P Bernard
January 2021, Journal of applied biomaterials & functional materials,
S Zahedi, and R Legrand, and G Brunel, and A Albert, and W Dewé, and B Coumans, and J P Bernard
December 2002, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons,
S Zahedi, and R Legrand, and G Brunel, and A Albert, and W Dewé, and B Coumans, and J P Bernard
July 2003, Journal of periodontology,
S Zahedi, and R Legrand, and G Brunel, and A Albert, and W Dewé, and B Coumans, and J P Bernard
June 1994, Clinical oral implants research,
S Zahedi, and R Legrand, and G Brunel, and A Albert, and W Dewé, and B Coumans, and J P Bernard
August 2005, Journal of materials science. Materials in medicine,
S Zahedi, and R Legrand, and G Brunel, and A Albert, and W Dewé, and B Coumans, and J P Bernard
September 2013, Tissue engineering. Part A,
S Zahedi, and R Legrand, and G Brunel, and A Albert, and W Dewé, and B Coumans, and J P Bernard
January 2020, Journal of oral & maxillofacial research,
S Zahedi, and R Legrand, and G Brunel, and A Albert, and W Dewé, and B Coumans, and J P Bernard
February 2020, Journal of periodontal & implant science,
S Zahedi, and R Legrand, and G Brunel, and A Albert, and W Dewé, and B Coumans, and J P Bernard
November 2017, Clinical oral implants research,
S Zahedi, and R Legrand, and G Brunel, and A Albert, and W Dewé, and B Coumans, and J P Bernard
January 2020, National journal of maxillofacial surgery,
Copied contents to your clipboard!