Urokinase receptor-dependent upregulation of smooth muscle cell adhesion to vitronectin by urokinase. 1998

A W Chang, and A Kuo, and E S Barnathan, and S S Okada
University of Pennsylvania School of Medicine, Philadelphia, USA.

The plasminogen activator system has been implicated in the modulation of the response to vascular injury. Although urokinase-type plasminogen activator (uPA) and its receptor (uPAR) may enhance matrix degradation as well as migration and invasion by smooth muscle cells (SMCs), their roles in cell adhesion are uncertain. Therefore, we examined the ability of uPA and uPAR to modulate adhesion of cultured human vascular SMCs to various matrices. We demonstrated a dose-dependent stimulation of adhesion by single-chain uPA (scuPA) to vitronectin (maximum 1.55-fold [+/-0. 04-fold] increase, 10 nmol/L, P<0.002) but not to laminin, collagen I, or collagen IV. Baseline adhesion to vitronectin was completely inhibited by both EDTA and RGD peptide but was restored to >40% of control in the presence of scuPA (P=0.001 and 0.046, respectively). Adhesion to vitronectin was also significantly enhanced by the amino-terminal fragment of uPA (P=0.007) and two-chain, high-molecular-weight uPA (P<0.01) but not by the low-molecular-weight fragment of uPA, which lacks the receptor-binding domain. Aprotinin, a plasmin inhibitor, had no effect on baseline or scuPA-stimulated adhesion, suggesting a plasmin-independent process. Preincubation of scuPA with soluble uPAR inhibited scuPA stimulation of adhesion by 88+/-14% (P=0.01), as did pretreatment of SMCs with phosphatidylinositol-specific phospholipase C, which removes glycophosphatidylinositol-anchored proteins, including uPAR. Antibodies to both alphavbeta3 and alphavbeta5 integrin inhibited baseline adhesion but not scuPA stimulation. Finally, coating plates with scuPA alone enabled cell adhesion, which could be inhibited by both soluble uPAR and anti-uPAR antibodies. These data suggest that uPA stimulates adhesion of SMCs specifically to vitronectin and that it is mediated by an interaction with uPAR. Upregulation of both proteins after vascular injury may facilitate migration through stimulation of both matrix degradation and cell adhesion.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D014568 Urokinase-Type Plasminogen Activator A proteolytic enzyme that converts PLASMINOGEN to FIBRINOLYSIN where the preferential cleavage is between ARGININE and VALINE. It was isolated originally from human URINE, but is found in most tissues of most VERTEBRATES. Plasminogen Activator, Urokinase-Type,U-Plasminogen Activator,Urinary Plasminogen Activator,Urokinase,Abbokinase,Kidney Plasminogen Activator,Renokinase,Single-Chain Urokinase-Type Plasminogen Activator,U-PA,Single Chain Urokinase Type Plasminogen Activator,U Plasminogen Activator,Urokinase Type Plasminogen Activator
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D016023 Integrins A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors (RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation. Integrin

Related Publications

A W Chang, and A Kuo, and E S Barnathan, and S S Okada
March 2002, The Journal of biological chemistry,
A W Chang, and A Kuo, and E S Barnathan, and S S Okada
May 1994, The Journal of biological chemistry,
A W Chang, and A Kuo, and E S Barnathan, and S S Okada
July 2019, Bulletin of experimental biology and medicine,
A W Chang, and A Kuo, and E S Barnathan, and S S Okada
September 2008, European journal of cell biology,
A W Chang, and A Kuo, and E S Barnathan, and S S Okada
December 1994, The Journal of biological chemistry,
A W Chang, and A Kuo, and E S Barnathan, and S S Okada
August 2002, The Journal of biological chemistry,
A W Chang, and A Kuo, and E S Barnathan, and S S Okada
May 1995, The American journal of physiology,
A W Chang, and A Kuo, and E S Barnathan, and S S Okada
January 2004, Journal of vascular surgery,
Copied contents to your clipboard!