| D007473 |
Ion Channels |
Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. |
Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane |
|
| D011073 |
Polyamines |
Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. |
Polyamine |
|
| D002460 |
Cell Line |
Established cell cultures that have the potential to propagate indefinitely. |
Cell Lines,Line, Cell,Lines, Cell |
|
| D000097806 |
GluK2 Kainate Receptor |
A high-affinity KAINATE and GLUTAMATE receptor that functions as ligand-gated ion channel in the CENTRAL NERVOUS SYSYEM and plays an essential role in NEURONAL PLASTICITY. |
GluR6 Kainate Receptor,GluR6 Kainate Receptors,GluR6 Receptor,Ionotropic Glutamate Receptor GluR6,Receptor, GluK2 Kainate,Receptor, GluR6,Receptor, GluR6 Kainate,Receptors, GluR6 Kainate |
|
| D013329 |
Structure-Activity Relationship |
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. |
Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships |
|
| D018092 |
Receptors, Kainic Acid |
A class of ionotropic glutamate receptors characterized by their affinity for KAINIC ACID. |
Kainate Receptors,Kainic Acid Receptors,Receptors, Kainate,Kainate Receptor,Kainic Acid Receptor,Receptor, Kainate,Receptor, Kainic Acid |
|
| D018408 |
Patch-Clamp Techniques |
An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. |
Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings |
|