The pharmacological properties of lipophilic calcium antagonists. 1998

P A van Zwieten
Department of Pharmacotherapy, University of Amsterdam, The Netherlands.

Several types of calcium antagonists (CA) (verapamil, diltiazem, nifedipine and related drugs) may be used as antihypertensives. In practice, the dihydropyridines (nifedipine and related drugs) are the CA used most frequently as antihypertensives. Apart from the lowering of blood pressure CA may lead to other, theoretically beneficial, effects: regression of left ventricular and vascular hypertrophy, renal protection, weak natriuretic, weak antiplatelet, anti-ischaemic and antiatherogenic activity. Several new dihydropyridine CA have been introduced in recent years. The advantages of the newer compounds, such as amlodipine, felodipine, isradipine, lacidipine and lercanidipine, may include: vasoselectivity, hence little or no cardiodepressant activity; an improved kinetic profile, resulting in a slow onset and long duration of action, fewer side-effects such as reflex tachycardia and headache, owing to the slow onset of the antihypertensive action. For a few newer CA a predominant effect on specialized circulatory beds (renal, coronary and cerebral) has been claimed. The new CA, which are clearly lipophilic, deserve special attention. Owing to the lipophilic character of such compounds considerable concentration occurs in lipid-containing membrane depots. The CA thus concentrated are slowly released from these depots and, subsequently, reach their targets, the L-type calcium channels. This phenomenon explains both the slow onset and the long duration of action of these CA. Owing to the slow onset of action reflex tachycardia is virtually absent. The long duration of action allows satisfactory control of blood pressure in hypertensives by means of a single daily dose. A few lipophilic dihydropyridine CA are vasoselective. This property implies that at therapeutic, vasodilatory dosages no cardiodepressant activity occurs. Lercanidipine is a recently introduced example of a lipophilic and vasoselective dihydropyridine CA. It is an effective vasodilator/antihypertensive drug, with a slow onset and long duration of action, which is associated with neither reflex tachycardia nor cardiodepressant activity. Other examples of recently introduced lipophilic CA are lacidipine, barnidipine and manidipine.

UI MeSH Term Description Entries
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004095 Dihydropyridines Pyridine moieties which are partially saturated by the addition of two hydrogen atoms in any position.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000959 Antihypertensive Agents Drugs used in the treatment of acute or chronic vascular HYPERTENSION regardless of pharmacological mechanism. Among the antihypertensive agents are DIURETICS; (especially DIURETICS, THIAZIDE); ADRENERGIC BETA-ANTAGONISTS; ADRENERGIC ALPHA-ANTAGONISTS; ANGIOTENSIN-CONVERTING ENZYME INHIBITORS; CALCIUM CHANNEL BLOCKERS; GANGLIONIC BLOCKERS; and VASODILATOR AGENTS. Anti-Hypertensive,Anti-Hypertensive Agent,Anti-Hypertensive Drug,Antihypertensive,Antihypertensive Agent,Antihypertensive Drug,Anti-Hypertensive Agents,Anti-Hypertensive Drugs,Anti-Hypertensives,Antihypertensive Drugs,Antihypertensives,Agent, Anti-Hypertensive,Agent, Antihypertensive,Agents, Anti-Hypertensive,Agents, Antihypertensive,Anti Hypertensive,Anti Hypertensive Agent,Anti Hypertensive Agents,Anti Hypertensive Drug,Anti Hypertensive Drugs,Anti Hypertensives,Drug, Anti-Hypertensive,Drug, Antihypertensive,Drugs, Anti-Hypertensive,Drugs, Antihypertensive
D014665 Vasodilator Agents Drugs used to cause dilation of the blood vessels. Vasoactive Antagonists,Vasodilator,Vasodilator Agent,Vasodilator Drug,Vasorelaxant,Vasodilator Drugs,Vasodilators,Vasorelaxants,Agent, Vasodilator,Agents, Vasodilator,Antagonists, Vasoactive,Drug, Vasodilator,Drugs, Vasodilator

Related Publications

P A van Zwieten
January 2000, Current atherosclerosis reports,
P A van Zwieten
January 1985, British journal of clinical pharmacology,
P A van Zwieten
January 1997, European heart journal,
P A van Zwieten
January 1988, Acta oto-laryngologica. Supplementum,
P A van Zwieten
January 1978, Bollettino della Societa italiana di cardiologia,
P A van Zwieten
January 2004, Nuclear medicine and biology,
P A van Zwieten
February 1983, Drugs,
P A van Zwieten
January 1991, Journal of cardiovascular pharmacology,
P A van Zwieten
January 1987, The American journal of cardiology,
Copied contents to your clipboard!