Arachidonic acid release from PC12 pheochromocytoma cells is regulated by I1-imidazoline receptors. 1998

P Ernsberger
Department of Nutrition, Case Western Reserve University School of Medicine Cleveland, OH 44106-4906, USA. pre@po.cwru.edu

Rat PC 12 pheochromocytoma cells lack alpha2-adrenergic receptors but express plasma membrane I1-imidazoline receptors. In response to the I1-agonist moxonidine, diglycerides are generated via phosphatidylcholine-selective phospholipase C, and prostaglandin E2 is released. This report characterizes I-receptor-mediated release of arachidonic acid, the precursor to the prostaglandins. PC12 cells were incubated with [3H]arachidonic acid for 24 h and superfused with 0.01% bovine serum albumin in Krebs' physiological buffer at 1 ml/min. Calcium ionophore increased arachidonic acid release only marginally, implying that in PC12 cells arachidonic acid release is not driven by calcium. The I1-agonist moxonidine at concentrations between 10 nM and 1.0 microM rapidly elicited up to two-fold increases in [3H]arachidonic acid release. Guanabenz, a potent alpha2-agonist and I2-ligand, had no effect. The selective I1-antagonist efaroxan blocked the action of moxonidine. The phospholipase A2 inhibitor aristolochic acid had no effect, suggesting that arachidonic acid release may be through an indirect pathway, possibly involving diglycerides. Thus, I1-imidazoline receptors in PC12 cells are coupled to arachidonic acid release through an as yet unknown pathway.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D010616 Phenanthrenes POLYCYCLIC AROMATIC HYDROCARBONS composed of three fused BENZENE rings.
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006143 Guanabenz An alpha-2 selective adrenergic agonist used as an antihypertensive agent. 2,6-Dichlorobenzylideneaminoguanidine,BR-750,Guanabenz Acetate,Guanabenz Monoacetate,WY-8678,Wyeth-Ayerst of Guanabenz Acetate,Wytensin,2,6 Dichlorobenzylideneaminoguanidine,Acetate Wyeth-Ayerst, Guanabenz,Acetate, Guanabenz,BR 750,BR750,Guanabenz Acetate Wyeth-Ayerst,Monoacetate, Guanabenz,WY 8678,WY8678,Wyeth Ayerst of Guanabenz Acetate
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001572 Benzofurans Compounds that contain a BENZENE ring fused to a furan ring. Coumarones,Diphenylbenzofuran

Related Publications

P Ernsberger
April 2000, British journal of pharmacology,
P Ernsberger
November 1992, Prostaglandins, leukotrienes, and essential fatty acids,
P Ernsberger
January 2011, Pharmacological reports : PR,
P Ernsberger
August 1998, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
P Ernsberger
September 2004, Cell death and differentiation,
Copied contents to your clipboard!