The pharmacological profile of L-glutamate transport in human NT2 neurones is consistent with excitatory amino acid transporter 2. 1998

J Dunlop, and H Beal McIlvain, and Z Lou, and R Franco
CNS Disorders, Wyeth Ayerst Research, Princeton, NJ 08543-8000, USA. dunlopj@war.wyeth.com

The human teratocarcinoma cell line NTera2/D1 can be differentiated to produce post-mitotic neurones (NT2-N cells) by prolonged (> 3 week) exposure to retinoic acid. In this study, we describe the characterisation of high-affinity Na+-dependent L-glutamate transport activity in post-mitotic differentiated NT2-N cells. NT2-N cells, but not the undifferentiated precursor cells, transported L-glutamate in a Na+-dependent manner, as determined by equimolar replacement of Na+ with choline. L-glutamate uptake was saturable and Eadie-Hofstee transformation of the saturation data revealed a Km of 10.6+/-0.8 microM, and a maximum transport capacity (Vmax) of 100.3+/-12.3 pmol min(-1) mg(-1) protein. Pharmacological characterisation of the transport activity in NT2-N cells produced a rank order of inhibitory activity which was identical to that determined for the human excitatory amino acid transporter 2 which we have analysed in a stable mammalian cell line (Madin Darby Canine Kidney (MDCK) cells). Of particular note, L-glutamate transport by NT2-N cells was sensitive to both dihydrokainate and kainate. The expression of human excitatory amino acid transporter mRNAs was studied using reverse transcriptase polymerase chain reaction. NT2-N cells expressed transcripts for excitatory amino acid transporters 2 and 3, but not for the subtypes 1, 4 and 5. We conclude that although the mRNA expression studies suggest the presence of transcripts for both excitatory amino acid transporter 2 and 3 in NT2-N cells, the sensitivity to dihydrokainate and kainate determined in the pharmacological analysis indicates that, of the known transporter subtypes, excitatory amino acid transporter 2 contributes to the bulk of the L-glutamate transport activity present in these cells.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D017981 Receptors, Neurotransmitter Cell surface receptors that bind signalling molecules released by neurons and convert these signals into intracellular changes influencing the behavior of cells. Neurotransmitter is used here in its most general sense, including not only messengers that act to regulate ion channels, but also those which act on second messenger systems and those which may act at a distance from their release sites. Included are receptors for neuromodulators, neuroregulators, neuromediators, and neurohumors, whether or not located at synapses. Neurohumor Receptors,Neuromediator Receptors,Neuromodulator Receptors,Neuroregulator Receptors,Receptors, Neurohumor,Receptors, Synaptic,Synaptic Receptor,Synaptic Receptors,Neuromediator Receptor,Neuromodulator Receptor,Neuroregulator Receptor,Neurotransmitter Receptor,Receptors, Neuromediators,Receptors, Neuromodulators,Receptors, Neuroregulators,Receptors, Neurotransmitters,Neuromediators Receptors,Neuromodulators Receptors,Neuroregulators Receptors,Neurotransmitter Receptors,Neurotransmitters Receptors,Receptor, Neuromediator,Receptor, Neuromodulator,Receptor, Neuroregulator,Receptor, Neurotransmitter,Receptor, Synaptic,Receptors, Neuromediator,Receptors, Neuromodulator,Receptors, Neuroregulator
D018690 Excitatory Amino Acid Agonists Drugs that bind to and activate excitatory amino acid receptors. Amino Acids, Excitatory, Agonists,Glutamate Agonists,Agonists, Excitatory Amino Acid,Amino Acid Agonist, Excitatory,Amino Acid Agonists, Excitatory,EAA Agonist,EAA Agonists,Excitatory Amino Acid Agonist,Glutamate Agonist,Agonist, EAA,Agonist, Glutamate,Agonists, EAA,Agonists, Glutamate

Related Publications

J Dunlop, and H Beal McIlvain, and Z Lou, and R Franco
February 2003, Proceedings of the National Academy of Sciences of the United States of America,
J Dunlop, and H Beal McIlvain, and Z Lou, and R Franco
December 2012, Neuroscience,
J Dunlop, and H Beal McIlvain, and Z Lou, and R Franco
June 1996, The Journal of physiology,
J Dunlop, and H Beal McIlvain, and Z Lou, and R Franco
January 2015, Journal of personalized nanomedicine,
J Dunlop, and H Beal McIlvain, and Z Lou, and R Franco
May 2008, The Journal of biological chemistry,
J Dunlop, and H Beal McIlvain, and Z Lou, and R Franco
November 2019, International journal of molecular sciences,
J Dunlop, and H Beal McIlvain, and Z Lou, and R Franco
January 2014, PloS one,
J Dunlop, and H Beal McIlvain, and Z Lou, and R Franco
January 2021, Frontiers in physiology,
Copied contents to your clipboard!