Human spermatogenesis in vitro: respective effects of follicle-stimulating hormone and testosterone on meiosis, spermiogenesis, and Sertoli cell apoptosis. 1998

J Tesarik, and M Guido, and C Mendoza, and E Greco
Laboratoire d'Eylau, Paris, France.

In spite of the availability of abundant data about in vitro spermatogenesis in laboratory animals, studies on human in vitro spermatogenesis are scarce. This study employed a relatively simple culture system, involving all cell types of seminiferous tubules, to analyze the effects of FSH and testosterone (T) on different characteristics of human germ and Sertoli cells in culture. By using fluorescence in-situ hybridization, we show that in vitro reduction of germ cell ploidy can be stimulated by FSH but not by T. FSH, but not T, also induced unexpectedly rapid (24-48 h) morphological changes resembling spermiogenesis, although individual changes (spermatid nucleus condensation and protrusion, cell body elongation, and flagellar growth) proceeded in an uncoordinated way and mostly resulted in the development of abnormal forms of elongated spermatids. Though ineffective alone, T potentiated the effects of FSH on meiosis and spermiogenesis. These effects of T were probably caused by the prevention of Sertoli cell apoptosis, an effect that could not be mimicked by FSH. These data show that, in the presence of high concentrations of FSH and T, human spermatogenesis can proceed in vitro with an unusual speed, but the resulting gametes are morphologically abnormal. The potential practical relevance of these findings to assisted reproduction remains to be assessed.

UI MeSH Term Description Entries
D008297 Male Males
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004338 Drug Combinations Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture. Drug Combination,Combination, Drug,Combinations, Drug
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D012708 Sertoli Cells Supporting cells projecting inward from the basement membrane of SEMINIFEROUS TUBULES. They surround and nourish the developing male germ cells and secrete the ANDROGEN-BINDING PROTEIN and hormones such as ANTI-MULLERIAN HORMONE. The tight junctions of Sertoli cells with the SPERMATOGONIA and SPERMATOCYTES provide a BLOOD-TESTIS BARRIER. Sertoli Cell,Cell, Sertoli,Cells, Sertoli
D013091 Spermatogenesis The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA. Spermatocytogenesis,Spermiogenesis
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

J Tesarik, and M Guido, and C Mendoza, and E Greco
January 1976, Recent progress in hormone research,
J Tesarik, and M Guido, and C Mendoza, and E Greco
April 1992, Bailliere's clinical endocrinology and metabolism,
J Tesarik, and M Guido, and C Mendoza, and E Greco
October 1981, The Journal of clinical investigation,
J Tesarik, and M Guido, and C Mendoza, and E Greco
July 1975, Molecular and cellular endocrinology,
J Tesarik, and M Guido, and C Mendoza, and E Greco
January 1974, The Journal of endocrinology,
J Tesarik, and M Guido, and C Mendoza, and E Greco
March 1983, Endocrinology,
J Tesarik, and M Guido, and C Mendoza, and E Greco
March 1981, Journal of ultrastructure research,
Copied contents to your clipboard!