Protein phosphatase 1 catalytic subunit isoforms from alfalfa: biochemical characterization and cDNA cloning. 1998

E Vissi, and E C Tóth, and I Kovács, and Z Magyar, and G V Horváth, and P Bagossi, and P Gergely, and D Dudits, and V Dombrádi
Department of Medical Chemistry, University Medical School of Debrecen, Debrecen, Hungary.

The catalytic subunit of protein phosphatase 1 (PP1c) was purified from an alfalfa (Medicago sativa) microcallus cell culture. The preparation was inhibited by rabbit muscle inhibitor-2 and okadaic acid and had a molecular mass of 35 kDa. Five distinct cDNAs termed MsPP1alpha, -beta, -gamma, -delta, and -epsilon were cloned from a M. sativa somatic embryo library. MsPP1alpha was identical to a cDNA reported earlier [A. Páy, M. Pirck, L. Bögre, H. Hirt, and E. Heberle-Bors Mol. Gen. Genet. 244, 176-182, 1994], while the others represented novel isoforms encoded by separate genes. The predicted amino acid sequences of MsPP1alpha, -beta, -gamma, -delta, and -epsilon were highly similar to each other and to other known PP1c sequences. The GST-MsPP1ss fusion protein expressed in Escherichia coli was catalytically active and was inhibited by inhibitor-2 and okadaic acid. Affinity-purified polyclonal MsPP1antipeptide antibody detected a protein of 36 kDa in crude cell extracts. These results proved that the cDNA clone encoded an active PP1c which was very similar to the purified enzyme. The mRNA and protein concentrations of PP1c as well as the specific activity of protein phosphatase 1 did not change during the cell cycle in a synchronized alfalfa cell culture. On the other hand, the isoforms exhibited different steady-state mRNA levels in different plant organs suggesting tissue-specific functions.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000455 Medicago sativa A plant species of the family FABACEAE widely cultivated for ANIMAL FEED. Alfalfa,Lucerne
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

E Vissi, and E C Tóth, and I Kovács, and Z Magyar, and G V Horváth, and P Bagossi, and P Gergely, and D Dudits, and V Dombrádi
December 1988, FEBS letters,
E Vissi, and E C Tóth, and I Kovács, and Z Magyar, and G V Horváth, and P Bagossi, and P Gergely, and D Dudits, and V Dombrádi
January 1998, Methods in molecular biology (Clifton, N.J.),
E Vissi, and E C Tóth, and I Kovács, and Z Magyar, and G V Horváth, and P Bagossi, and P Gergely, and D Dudits, and V Dombrádi
July 1993, Gene,
E Vissi, and E C Tóth, and I Kovács, and Z Magyar, and G V Horváth, and P Bagossi, and P Gergely, and D Dudits, and V Dombrádi
August 2003, The Biochemical journal,
E Vissi, and E C Tóth, and I Kovács, and Z Magyar, and G V Horváth, and P Bagossi, and P Gergely, and D Dudits, and V Dombrádi
November 1987, Biochemistry,
E Vissi, and E C Tóth, and I Kovács, and Z Magyar, and G V Horváth, and P Bagossi, and P Gergely, and D Dudits, and V Dombrádi
June 1995, Plant molecular biology,
E Vissi, and E C Tóth, and I Kovács, and Z Magyar, and G V Horváth, and P Bagossi, and P Gergely, and D Dudits, and V Dombrádi
January 1997, Acta biologica Hungarica,
E Vissi, and E C Tóth, and I Kovács, and Z Magyar, and G V Horváth, and P Bagossi, and P Gergely, and D Dudits, and V Dombrádi
June 2008, DNA sequence : the journal of DNA sequencing and mapping,
E Vissi, and E C Tóth, and I Kovács, and Z Magyar, and G V Horváth, and P Bagossi, and P Gergely, and D Dudits, and V Dombrádi
December 1999, The Journal of biological chemistry,
E Vissi, and E C Tóth, and I Kovács, and Z Magyar, and G V Horváth, and P Bagossi, and P Gergely, and D Dudits, and V Dombrádi
March 1998, Gene,
Copied contents to your clipboard!