Normal differentiation of cultured lens cells after inhibition of gap junction-mediated intercellular communication. 1998

A C Le, and L S Musil
Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland, Oregon, 97201, USA.

The cells of the vertebrate lens are linked to each other by gap junctions, clusters of intercellular channels that mediate the direct transfer of low-molecular-weight substances between the cytosols of adjoining cells. Although gap junctions are detectable in the unspecialized epithelial cells that comprise the anterior face of the organ, both their number and size are greatly increased in the secondary fiber cells that differentiate from them at the lens equator. In other organs, gap junctions have been shown to play an important role in tissue development and differentiation. It has been proposed, although not experimentally tested, that this may be true in the lens as well. To investigate the function of gap junctions in the development of the lens, we have examined the effect of the gap junction blocker 18beta-glycyrrhetinic acid (betaGA) on the differentiation of primary cultures (both dissociated cell-derived monolayers and central epithelium explants) of embryonic chick lens epithelial cells. We found that betaGA greatly reduced gap junction-mediated intercellular transfer of Lucifer yellow and biocytin throughout the 8-day culture period. betaGA did not, however, affect the differentiation of these cells into MP28-expressing secondary fibers. Furthermore, inhibition of gap junctions had no apparent effect on either of the two other types of intercellular (adherens and tight) junctions present in the lens. We conclude that the high level of gap junctional intercellular communication characteristic of the lens equator in vivo is not required for secondary fiber formation as assayed in culture. Up-regulation of gap junctions is therefore likely to be a consequence rather than a cause of lens fiber differentiation and may primarily play a role in lens physiology.

UI MeSH Term Description Entries
D007908 Lens, Crystalline A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION. Eye Lens,Lens, Eye,Crystalline Lens
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D006034 Glycyrrhetinic Acid An oleanolic acid from GLYCYRRHIZA that has some antiallergic, antibacterial, and antiviral properties. It is used topically for allergic or infectious skin inflammation and orally for its aldosterone effects in electrolyte regulation. Enoxolone,Glycyrrhetic Acid,Rhetinic Acid,Uralenic Acid,Arthrodont,Glyciram,Glycyram,Jintan,Po 12,12, Po,Acid, Glycyrrhetic,Acid, Glycyrrhetinic,Acid, Rhetinic,Acid, Uralenic
D000287 Administration, Topical The application of drug preparations to the surfaces of the body, especially the skin (ADMINISTRATION, CUTANEOUS) or mucous membranes. This method of treatment is used to avoid systemic side effects when high doses are required at a localized area or as an alternative systemic administration route, to avoid hepatic processing for example. Drug Administration, Topical,Administration, Topical Drug,Topical Administration,Topical Drug Administration,Administrations, Topical,Administrations, Topical Drug,Drug Administrations, Topical,Topical Administrations,Topical Drug Administrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D017629 Gap Junctions Connections between cells which allow passage of small molecules and electric current. Gap junctions were first described anatomically as regions of close apposition between cells with a narrow (1-2 nm) gap between cell membranes. The variety in the properties of gap junctions is reflected in the number of CONNEXINS, the family of proteins which form the junctions. Gap Junction,Junction, Gap,Junctions, Gap

Related Publications

A C Le, and L S Musil
July 1991, The American journal of physiology,
A C Le, and L S Musil
April 2005, Investigative ophthalmology & visual science,
A C Le, and L S Musil
May 2003, The Journal of endocrinology,
A C Le, and L S Musil
August 2002, Cardiovascular research,
A C Le, and L S Musil
June 2008, Experimental eye research,
A C Le, and L S Musil
September 2001, Journal of leukocyte biology,
A C Le, and L S Musil
June 2005, Annales francaises d'anesthesie et de reanimation,
A C Le, and L S Musil
January 2007, Progress in biophysics and molecular biology,
Copied contents to your clipboard!