Cholecystokinin affects gastric emptying and stomach motility in the rainbow trout Oncorhynchus mykiss. 1999

C Olsson, and G Aldman, and A Larsson, and S Holmgren
Department of Zoophysiology, University of Göteborg, Box 463, S-405 30 Göteborg, Sweden and Department of Radiation Physics, Sahlgrenska Hospital, Göteborg, Sweden. catharina.olsson@zool.gu.se

In this study, we describe new methods for recording gastric emptying and in vivo measurements of intragastric pressure in fish. Using these methods, we investigated the effects of the sulphated octapeptide of cholecystokinin (CCK8) on gastric emptying and on stomach motility in vivo and in vitro. Gastric emptying of 99Tcm-labelled food was measured in swimming fish by using a gamma camera, counting consecutive 2.5 min periods for 18-42 h. After 20 h, 55.3+/-4.0 % of the labelled food remained in the stomach of the control fish (mean s.e.m., N=9). Vascular infusion of CCK8 (25 pmol kg-1 h-1) delayed gastric emptying so that 70.4+/-4.8 % of the labelled food remained in the stomach after 20 h (N=8). Gastric pressure changes in vivo were measured using a balloon surgically fitted into the cardiac or pyloric part of the stomach. In the cardiac part, intra-arterial infusion of CCK8 at 0.1 nmol kg-1 h-1 resulted in a decrease in the frequency and amplitude of rhythmic contractions, while higher doses started/increased contractions. Atropine blocked much of the basal contractile activity, but did not influence the CCK8-induced inhibition of contractile activity. The pyloric part of the stomach was unaffected by intra-arterial infusion of CCK8 or atropine. In vitro perfusion of the stomach (with a balloon placed in the cardiac part to record motility) with CCK8 at high concentrations (10(-7 )mol l-1 and above) augmented the spontaneous contractions, while lower concentrations had inconsistent effects. In addition, CCK8 (10(-7) to 10(-6 )mol l-1) decreased the amplitude of spontaneous contractions in longitudinal strip preparations, usually in combination with an increase in the resting tension. The decrease in amplitude was not affected by the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester hydrochloride (L-NAME; 10(-4 )mol l-1). Depending on the concentration and experimental arrangement, CCK8 had either inhibitory or excitatory effects on the cardiac stomach, suggesting the possible presence of different types of CCK receptor. We conclude that the predominant effect of CCK8 in vivo may be a slowing down of gastric emptying, presumably coinciding with a release of bile into the duodenum.

UI MeSH Term Description Entries
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin
D005746 Gastric Emptying The evacuation of food from the stomach into the duodenum. Emptying, Gastric,Emptyings, Gastric,Gastric Emptyings
D005769 Gastrointestinal Motility The motor activity of the GASTROINTESTINAL TRACT. Intestinal Motility,Gastrointestinal Motilities,Intestinal Motilities,Motilities, Gastrointestinal,Motilities, Intestinal,Motility, Gastrointestinal,Motility, Intestinal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine
D012844 Sincalide An octapeptide hormone present in the intestine and brain. When secreted from the gastric mucosa, it stimulates the release of bile from the gallbladder and digestive enzymes from the pancreas. CCK-8,Cholecystokinin Octapeptide,CCK-OP,Cholecystokinin Pancreozymin C-Terminal Octapeptide,H-Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2,Kinevac,OP-CCK,SQ-19,844,SQ-19844,Syncalide,Cholecystokinin Pancreozymin C Terminal Octapeptide,SQ 19,844,SQ 19844,SQ19,844,SQ19844
D017686 Oncorhynchus mykiss A large stout-bodied, sometimes anadromous, TROUT found in still and flowing waters of the Pacific coast from southern California to Alaska. It has a greenish back, a whitish belly, and pink, red, or lavender stripes on the sides, with usually a sprinkling of black dots. It is highly regarded as a sport and food fish. Its former name was Salmo gairdneri. The sea-run rainbow trouts are often called steelheads. Redband trouts refer to interior populations of rainbows. Salmo gairdneri,Steelhead,Trout, Rainbow,Trout, Redband,Rainbow Trout,Redband Trout,Steelheads
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

C Olsson, and G Aldman, and A Larsson, and S Holmgren
October 2003, Aquatic toxicology (Amsterdam, Netherlands),
C Olsson, and G Aldman, and A Larsson, and S Holmgren
August 2018, American journal of physiology. Regulatory, integrative and comparative physiology,
C Olsson, and G Aldman, and A Larsson, and S Holmgren
June 2015, Aquatic toxicology (Amsterdam, Netherlands),
C Olsson, and G Aldman, and A Larsson, and S Holmgren
January 1992, Peptides,
C Olsson, and G Aldman, and A Larsson, and S Holmgren
July 2017, The Journal of experimental biology,
C Olsson, and G Aldman, and A Larsson, and S Holmgren
April 2002, Fish & shellfish immunology,
C Olsson, and G Aldman, and A Larsson, and S Holmgren
April 2000, Fish & shellfish immunology,
C Olsson, and G Aldman, and A Larsson, and S Holmgren
July 2004, The British journal of nutrition,
C Olsson, and G Aldman, and A Larsson, and S Holmgren
October 1995, General and comparative endocrinology,
C Olsson, and G Aldman, and A Larsson, and S Holmgren
April 2006, Ecotoxicology (London, England),
Copied contents to your clipboard!