The function of the p190 Rho GTPase-activating protein is controlled by its N-terminal GTP binding domain. 1998

N Tatsis, and D A Lannigan, and I G Macara
Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA.

p190 is a GTPase-activating protein (GAP) for the Rho family of GTPases. The GAP domain of p190 is at the C terminus of the protein. At its N terminus, p190 contains a GTP binding domain of unknown significance. We have introduced a mutation (Ser36 --> Asn) into this domain of p190 that decreased its ability to bind guanine nucleotide when expressed as a hemagglutinin (HA)-tagged protein in COS cells. In vitro, both the wild type and S36N mutant HA-p190 proteins showed similar GAP activities toward RhoA, but when expressed in NIH 3T3 fibroblasts only wild type p190 appeared able to function as a RhoGAP. Wild type HA-p190 induced a phenotype of rounded cells with long, beaded extensions similar to that seen when Rho function is disrupted by ADP-ribosylation. HA-p190(S36N), although expressed at a similar level to the wild type protein, had no discernible effect on the cells. The beaded extension phenotype induced by wild type HA-p190 required GAP function. A GAP-defective mutant, p190(R1283A), had no effect on cell morphology. Moreover, the beaded extension phenotype could be suppressed by co-expression of a gain-of-function Rho mutant, RhoA(G14V), or Rac mutant, Rac1(G12V). Activation of the Jun kinase (JNK) via muscarinic receptors was inhibited by wild type HA-p190, but JNK activity was enhanced by the S36N mutant. Co-expression of HA-p190 with a fragment containing only the mutated GTP binding domain partially inhibited the beaded extension phenotype, suggesting that it may sequester a factor required for p190 function. Taken together these data demonstrate that within the cell, the Rho/Rac GAP activity of p190 can be regulated by the N-terminal GTP binding domain.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010750 Phosphoproteins Phosphoprotein
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine

Related Publications

N Tatsis, and D A Lannigan, and I G Macara
December 1999, The Journal of biological chemistry,
N Tatsis, and D A Lannigan, and I G Macara
July 2000, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
N Tatsis, and D A Lannigan, and I G Macara
December 1997, The Journal of biological chemistry,
N Tatsis, and D A Lannigan, and I G Macara
October 2005, Journal of cell science,
N Tatsis, and D A Lannigan, and I G Macara
June 1991, The Biochemical journal,
N Tatsis, and D A Lannigan, and I G Macara
January 1978, FEBS letters,
Copied contents to your clipboard!