Spontaneous and neurally activated depolarizations in smooth muscle cells of the guinea-pig urethra. 1999

H Hashitani, and F R Edwards
Department of Zoology, The University of Melbourne, Parkville, Victoria 3052, Australia. hikaru@clyde.its.unimelb.edu.au

1. Membrane potential recordings were made from longitudinal smooth muscle cells of the guinea-pig urethra using conventional microelectrode techniques. 2. Smooth muscle cells of the urethra developed spontaneous transient depolarizations (STDs) and slow waves. Single unit STDs had amplitudes of approximately 5 mV and slow waves seemed to occur as amplitude multiples of single unit STDs. 3. STDs and slow waves were abolished by niflumic acid or low chloride solution and also by cyclopiazonic acid (CPA), BAPTA or high concentrations of caffeine. Lower concentrations of caffeine abolished slow waves but not STDs. Nifedipine inhibited slow waves but not STDs. 4. When stochastic properties of STDs were examined, it was found that the intervals between occurrences were not well modelled by Poisson statistics, instead the STDs appeared to be clustered. 5. Transmural stimulation evoked excitatory junctional potentials (EJPs) and triggered slow waves which were abolished by either alpha,beta-methylene-ATP or tetrodotoxin. Evoked slow waves were also abolished by caffeine, co-application of caffeine and ryanodine or by CPA which left EJPs unaffected. 6. In conclusion, smooth muscle cells of urethra exhibit STDs which are clustered rather than random events, and are the result of spontaneous Ca2+ release from intracellular stores and subsequent activation of Ca2+-activated chloride channels. STDs sum to activate L-type Ca2+ channels which contribute to the sustained phase of slow waves. Stimulation of purinoceptors by neurally released ATP initiates EJPs and also causes the release of Ca2+ from intracellular stores to evoke slow waves.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D009544 Niflumic Acid An analgesic and anti-inflammatory agent used in the treatment of rheumatoid arthritis. Donalgin,Flunir,Niflactol,Niflugel,Nifluril,Acid, Niflumic
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep

Related Publications

H Hashitani, and F R Edwards
January 2006, The Journal of urology,
H Hashitani, and F R Edwards
August 1996, British journal of pharmacology,
H Hashitani, and F R Edwards
September 1991, British journal of pharmacology,
H Hashitani, and F R Edwards
March 1998, The Journal of physiology,
H Hashitani, and F R Edwards
August 1996, The Japanese journal of physiology,
H Hashitani, and F R Edwards
July 1994, Pflugers Archiv : European journal of physiology,
H Hashitani, and F R Edwards
September 1992, The American journal of physiology,
H Hashitani, and F R Edwards
October 1989, Gastroenterologia Japonica,
Copied contents to your clipboard!