Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions. 1999

M D Rosato Siri, and O D Uchitel
Laboratorio de Fisiología y Biología Molecular, Departamento de BiologíaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires (1428), Argentina.

1. The effects of different calcium channel blockers (omega-agatoxin IVA (omega-Aga IVA), omega-conotoxin GVIA (omega-CgTx GVIA) and dihydropyridines) were tested on spontaneous and evoked transmitter release at embryonic and newborn rat neuromuscular junctions (NMJs). 2. The nerve-evoked transmitter release quantal content (m) was strongly reduced by the P/Q-type voltage-dependent calcium channel (VDCC) blocker omega-Aga IVA (100 nM) at newly formed endplates of embryos and 0- to 11-day-old rats, in agreement with the effect of this blocker on transmitter release at mature and reinnervating muscles. 3. omega-CgTx GVIA (1-5 microM), the N-type VDCC blocker, also caused a significant reduction in m at newly formed NMJs early in development (embryos and 0- to 4-day-old rats), while it was ineffective in more mature animals (5- to 11-day-old rats). 4. L-type channel blockers, nitrendipine (1 microM) and nifedipine (1 microM), did not significantly affect neurally evoked release at developing NMJs. However, nifedipine (10 microM) was able to increase m significantly at 0- to 4-day-old rat NMJs. 5. At developing NMJs, K+-evoked transmitter release was dependent on Ca2+ entry through VDCCs of the P/Q-type family (100 nM omega-Aga IVA reduced 70 % of the K+-evoked miniature endplate potential frequency). N- and L-type VDCC blockers did not affect this type of release. 6. We conclude that at rat neuromuscular junctions the presynaptic calcium channel types involved in transmitter release undergo developmental changes during the early postnatal period.

UI MeSH Term Description Entries
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D009568 Nitrendipine A calcium channel blocker with marked vasodilator action. It is an effective antihypertensive agent and differs from other calcium channel blockers in that it does not reduce glomerular filtration rate and is mildly natriuretic, rather than sodium retentive. Balminil,Bay e 5009,Bayotensin,Baypresol,Baypress,Gericin,Jutapress,Nidrel,Niprina,Nitre AbZ,Nitre-Puren,Nitregamma,Nitren 1A Pharma,Nitren Lich,Nitren acis,Nitrend KSK,Nitrendepat,Nitrendi Biochemie,Nitrendidoc,Nitrendimerck,Nitrendipin AL,Nitrendipin Apogepha,Nitrendipin Atid,Nitrendipin Basics,Nitrendipin Heumann,Nitrendipin Jenapharm,Nitrendipin Lindo,Nitrendipin Stada,Nitrendipin beta,Nitrendipin-ratiopharm,Nitrendipino Bayvit,Nitrendipino Ratiopharm,Nitrensal,Nitrepress,Tensogradal,Trendinol,Vastensium,nitrendipin von ct,nitrendipin-corax,Nitre Puren,NitrePuren,Nitrendipin ratiopharm,Nitrendipinratiopharm,nitrendipin corax,nitrendipincorax
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic

Related Publications

M D Rosato Siri, and O D Uchitel
April 2018, Pesticide biochemistry and physiology,
M D Rosato Siri, and O D Uchitel
August 1988, Puerto Rico health sciences journal,
M D Rosato Siri, and O D Uchitel
January 1998, Progress in brain research,
M D Rosato Siri, and O D Uchitel
May 1990, British journal of pharmacology,
M D Rosato Siri, and O D Uchitel
July 2007, Journal of neurophysiology,
M D Rosato Siri, and O D Uchitel
December 2002, Physiology & behavior,
Copied contents to your clipboard!