Mapping protein-ligand interactions using whole genome phage display libraries. 1998

T Palzkill, and W Huang, and G M Weinstock
Department of Microbiology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. timothyp@bcm.tmc.edu

The function of many genes cannot be deduced from sequence similarity, and biochemical methods are usually required. Whole genome sequences can be thought of as not only a set of genes but also collections of functional domains. These domains can be studied by affinity methods whereby identification of the ligand can provide information on biochemical function. To take advantage of this method, one must express all functional domains in a form suitable for affinity studies. Phage display technology provides a means for accomplishing this. The pJuFo phage display system, based on the interaction between the leucine zippers Jun and Fos, has been modified and used to create a genomic phage display library from Escherichia coli MG1655. The system has been tested by using the library to map the dominant binding epitopes for an anti-RecA protein polyclonal antibody sera. This methodology provides a general biochemical approach to functional analysis of protein-ligand interactions on a genomewide basis.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic

Related Publications

T Palzkill, and W Huang, and G M Weinstock
January 2013, Methods in molecular biology (Clifton, N.J.),
T Palzkill, and W Huang, and G M Weinstock
January 2009, Methods in molecular biology (Clifton, N.J.),
T Palzkill, and W Huang, and G M Weinstock
January 2009, Methods in molecular biology (Clifton, N.J.),
T Palzkill, and W Huang, and G M Weinstock
December 1999, Nature biotechnology,
T Palzkill, and W Huang, and G M Weinstock
January 2019, Methods in molecular biology (Clifton, N.J.),
T Palzkill, and W Huang, and G M Weinstock
January 2018, Methods in molecular biology (Clifton, N.J.),
T Palzkill, and W Huang, and G M Weinstock
February 2003, Current protocols in cell biology,
T Palzkill, and W Huang, and G M Weinstock
January 2007, Nucleic acids research,
T Palzkill, and W Huang, and G M Weinstock
June 2001, Enzyme and microbial technology,
T Palzkill, and W Huang, and G M Weinstock
August 2003, Journal of controlled release : official journal of the Controlled Release Society,
Copied contents to your clipboard!