Typing of Listeria monocytogenes strains by repetitive element sequence-based PCR. 1999

B Jersek, and P Gilot, and M Gubina, and N Klun, and J Mehle, and E Tcherneva, and N Rijpens, and L Herman
Centre of Agricultural Research, Department of Animal Product Quality (DVK), B-9090 Melle, Belgium. Barbara.Jersek@BF.UNI-LJ.SI

Listeria monocytogenes strains possess short repetitive extragenic palindromic (REP) elements and enterobacterial repetitive intergenic consensus (ERIC) sequences. We used repetitive element sequence-based PCR (rep-PCR) to evaluate the potential of REP and ERIC elements for typing L. monocytogenes strains isolated from humans, animals, and foods. On the basis of rep-PCR fingerprints, L. monocytogenes strains were divided into four major clusters matching origin of isolation. rep-PCR fingerprints of human and animal isolates were different from those of food isolates. Computer evaluation of rep-PCR fingerprints allowed discrimination among the tested serotypes 1/2a, 1/2b, 1/2c, 3b, and 4b within each major cluster. The index of discrimination calculated for 52 epidemiologically unrelated isolates of L. monocytogenes was 0.98 for REP- and ERIC-PCR. Our results suggest that rep-PCR can provide an alternative method for L. monocytogenes typing.

UI MeSH Term Description Entries
D008089 Listeria monocytogenes A species of gram-positive, rod-shaped bacteria widely distributed in nature. It has been isolated from sewage, soil, silage, and from feces of healthy animals and man. Infection with this bacterium leads to encephalitis, meningitis, endocarditis, and abortion.
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005069 Evaluation Studies as Topic Works about studies that determine the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. Critique,Evaluation Indexes,Evaluation Methodology,Evaluation Report,Evaluation Research,Methodology, Evaluation,Pre-Post Tests,Qualitative Evaluation,Quantitative Evaluation,Theoretical Effectiveness,Use-Effectiveness,Critiques,Effectiveness, Theoretical,Evaluation Methodologies,Evaluation Reports,Evaluation, Qualitative,Evaluation, Quantitative,Evaluations, Qualitative,Evaluations, Quantitative,Indexes, Evaluation,Methodologies, Evaluation,Pre Post Tests,Pre-Post Test,Qualitative Evaluations,Quantitative Evaluations,Report, Evaluation,Reports, Evaluation,Research, Evaluation,Test, Pre-Post,Tests, Pre-Post,Use Effectiveness
D005516 Food Microbiology The presence of bacteria, viruses, and fungi in food and food products. This term is not restricted to pathogenic organisms: the presence of various non-pathogenic bacteria and fungi in cheeses and wines, for example, is included in this concept. Microbiology, Food
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015373 Bacterial Typing Techniques Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping. Bacteriocin Typing,Biotyping, Bacterial,Typing, Bacterial,Bacterial Biotyping,Bacterial Typing,Bacterial Typing Technic,Bacterial Typing Technics,Bacterial Typing Technique,Technic, Bacterial Typing,Technics, Bacterial Typing,Technique, Bacterial Typing,Techniques, Bacterial Typing,Typing Technic, Bacterial,Typing Technics, Bacterial,Typing Technique, Bacterial,Typing Techniques, Bacterial,Typing, Bacteriocin
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

B Jersek, and P Gilot, and M Gubina, and N Klun, and J Mehle, and E Tcherneva, and N Rijpens, and L Herman
August 2003, Journal of clinical microbiology,
B Jersek, and P Gilot, and M Gubina, and N Klun, and J Mehle, and E Tcherneva, and N Rijpens, and L Herman
December 2005, Journal of food protection,
B Jersek, and P Gilot, and M Gubina, and N Klun, and J Mehle, and E Tcherneva, and N Rijpens, and L Herman
July 1996, Veterinary microbiology,
B Jersek, and P Gilot, and M Gubina, and N Klun, and J Mehle, and E Tcherneva, and N Rijpens, and L Herman
January 2005, Journal of clinical microbiology,
B Jersek, and P Gilot, and M Gubina, and N Klun, and J Mehle, and E Tcherneva, and N Rijpens, and L Herman
February 2011, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology,
B Jersek, and P Gilot, and M Gubina, and N Klun, and J Mehle, and E Tcherneva, and N Rijpens, and L Herman
January 1997, Microbiology and immunology,
B Jersek, and P Gilot, and M Gubina, and N Klun, and J Mehle, and E Tcherneva, and N Rijpens, and L Herman
July 1996, Letters in applied microbiology,
B Jersek, and P Gilot, and M Gubina, and N Klun, and J Mehle, and E Tcherneva, and N Rijpens, and L Herman
January 2014, Methods in molecular biology (Clifton, N.J.),
B Jersek, and P Gilot, and M Gubina, and N Klun, and J Mehle, and E Tcherneva, and N Rijpens, and L Herman
March 1998, Letters in applied microbiology,
B Jersek, and P Gilot, and M Gubina, and N Klun, and J Mehle, and E Tcherneva, and N Rijpens, and L Herman
June 2003, Journal of clinical microbiology,
Copied contents to your clipboard!