Carotid body chemoreceptor function is impaired by vecuronium during hypoxia. 1998

N Wyon, and H Joensen, and Y Yamamoto, and S G Lindahl, and L I Eriksson
Department of Anesthesiology and Intensive Care, Karolinska Hospital and Institute, Stockholm, Sweden.

BACKGROUND Neuromuscular blocking agents reduce the human ventilatory response to hypoxia at partial neuromuscular block. It was hypothesized that vecuronium impairs carotid body chemoreceptor function during hypoxia. METHODS The effect of systemic administration of vecuronium on single chemoreceptor activity during hypoxia, as recorded from a single nerve fiber preparation of the carotid sinus nerve, was studied in seven mechanically ventilated New Zealand White rabbits during continuous thiopental anesthesia. During normoventilation, the isocapnic hypoxic chemosensitivity of the single carotid body chemoreceptor was measured at four levels of oxygenation; these measurements were repeated at six separate occasions: control recording before injection, after intravenous administrations of 0.1 mg and 0.5 mg of vecuronium, and then at three occasions during a 90-min recovery period. Chemoreceptor chemosensitivity during isocapnic hypoxia was expressed as a hyperbolic function: Chemoreceptor output (Hz) = a + b x PaO2(-1) (mmHg). RESULTS Chemosensitivity was reduced after both 0.1 mg and 0.5 mg vecuronium intravenous administration compared with control measurements; the hypoxic response curve was significantly depressed after both doses (P < 0.05). Notably, there was variation in the effect of vecuronium; some chemoreceptor preparations showed only minimal impairment, whereas some showed an almost abolished response to hypoxia. The chemosensitivity remained significantly depressed at 30 and 60 min but had recovered spontaneously at 90 min after 0.5 mg vecuronium. CONCLUSIONS It is concluded that vecuronium depresses carotid body chemoreceptor function to a varying extent during hypoxia and that the depression recovers spontaneously.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009466 Neuromuscular Blocking Agents Drugs that interrupt transmission of nerve impulses at the skeletal neuromuscular junction. They can be of two types, competitive, stabilizing blockers (NEUROMUSCULAR NONDEPOLARIZING AGENTS) or noncompetitive, depolarizing agents (NEUROMUSCULAR DEPOLARIZING AGENTS). Both prevent acetylcholine from triggering the muscle contraction and they are used as anesthesia adjuvants, as relaxants during electroshock, in convulsive states, etc. Neuromuscular Blocker,Neuromuscular Blocking Agent,Neuromuscular Blockers,Agent, Neuromuscular Blocking,Agents, Neuromuscular Blocking,Blocker, Neuromuscular,Blockers, Neuromuscular,Blocking Agent, Neuromuscular,Blocking Agents, Neuromuscular
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001784 Blood Gas Analysis Measurement of oxygen and carbon dioxide in the blood. Analysis, Blood Gas,Analyses, Blood Gas,Blood Gas Analyses,Gas Analyses, Blood,Gas Analysis, Blood
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002344 Carotid Body A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control. Glomus Caroticum,Bodies, Carotid,Body, Carotid,Caroticum, Glomus,Carotid Bodies
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000758 Anesthesia A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.

Related Publications

N Wyon, and H Joensen, and Y Yamamoto, and S G Lindahl, and L I Eriksson
May 2002, Acta anaesthesiologica Scandinavica,
N Wyon, and H Joensen, and Y Yamamoto, and S G Lindahl, and L I Eriksson
January 1986, Acta physiologica et pharmacologica latinoamericana : organo de la Asociacion Latinoamericana de Ciencias Fisiologicas y de la Asociacion Latinoamericana de Farmacologia,
N Wyon, and H Joensen, and Y Yamamoto, and S G Lindahl, and L I Eriksson
March 2009, American journal of physiology. Cell physiology,
N Wyon, and H Joensen, and Y Yamamoto, and S G Lindahl, and L I Eriksson
January 1978, Neuroscience,
N Wyon, and H Joensen, and Y Yamamoto, and S G Lindahl, and L I Eriksson
January 2001, Advances in experimental medicine and biology,
N Wyon, and H Joensen, and Y Yamamoto, and S G Lindahl, and L I Eriksson
January 1996, Advances in experimental medicine and biology,
N Wyon, and H Joensen, and Y Yamamoto, and S G Lindahl, and L I Eriksson
October 1988, Journal of applied physiology (Bethesda, Md. : 1985),
N Wyon, and H Joensen, and Y Yamamoto, and S G Lindahl, and L I Eriksson
May 2010, Journal of applied physiology (Bethesda, Md. : 1985),
N Wyon, and H Joensen, and Y Yamamoto, and S G Lindahl, and L I Eriksson
August 2011, Journal of cellular physiology,
N Wyon, and H Joensen, and Y Yamamoto, and S G Lindahl, and L I Eriksson
May 1978, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!